Decoherence and loss of entanglement in acoustic black holes.

Phys Rev Lett

Departamento de Física Juan José Giambiagi, FCEyN UBA, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellón I, 1428 Buenos Aires, Argentina-IFIBA.

Published: June 2012

We study the process of decoherence in acoustic black holes. We focus on the ion trap model proposed by Horstmann et al. [Phys. Rev. Lett. 104, 250403 (2010)], but the formalism is general to any experimental implementation. For that particular setup, we compute the decoherence time for the experimental parameters that they proposed. We find that a quantum to classical transition occurs during the measurement, and we propose improved parameters to avoid such a feature. We also study the entanglement between the Hawking-pair phonons for an acoustic black hole while in contact with a reservoir, through the quantum correlations, showing that they remain strongly correlated for small enough times and temperatures.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.108.261301DOI Listing

Publication Analysis

Top Keywords

acoustic black
12
black holes
8
decoherence loss
4
loss entanglement
4
entanglement acoustic
4
holes study
4
study process
4
process decoherence
4
decoherence acoustic
4
holes focus
4

Similar Publications

Article Synopsis
  • Halide perovskites, particularly tin halides, are gaining attention as thermoelectric materials due to their low thermal conductivity and good charge transport.
  • Partial substitution of Sn (II) with Ge (II) in CsSnGeI perovskite thin films enhances stability, keeping the material in the black orthorhombic phase after prolonged exposure to air.
  • Ge substitution significantly reduces lattice thermal conductivity and improves the understanding of phonon behavior in these mixed metal perovskites, contributing to their potential in thermoelectric applications.
View Article and Find Full Text PDF

Passive acoustic monitoring for seabed bubble flows: Case of shallow methane seeps at Laspi Bay (Black Sea).

J Acoust Soc Am

December 2024

Department of Geology and Geochemistry of Fossil Fuels, Faculty of Geology, Moscow State University, Moscow 119991, Russia.

This research quantifies the gas release rate from a natural shallow methane seep site in the Laspi Bay (Black Sea), whose origin is thermocatalytic. An adaptive single bubble identification technique was applied to analyze gas volume and release rates from passive acoustic data. Gas from the seafloor was emitted by single bubbles that occurred in clusters.

View Article and Find Full Text PDF

Passive acoustic monitoring (PAM) is an increasingly popular tool to study vocalising species. The amount of data generated by PAM studies calls for robust automatic classifiers. Deep learning (DL) techniques have been proven effective in identifying acoustic signals in challenging datasets, but due to their black-box nature their underlying biases are hard to quantify.

View Article and Find Full Text PDF

The startle eyeblink reflex is thought to function as a means of orienting to salient stimuli, and, by proxy, sensitivity to threat cues. The absence or attenuation of this reflex may thus suggest disengagement from one's environment, potentially in circumstances when engagement is called for, and, therefore, may serve as a potential marker for dissociation as it occurs. The present study investigates whether individual differences in startle response magnitude and habituation are attributable to early and multiple trauma exposure, dissociation, and PTSD symptom severity.

View Article and Find Full Text PDF

Two-dimensional (2D) layered materials exhibit strong light-matter interactions, remarkable excitonic effects, and ultrafast optical response, making them promising for high-speed on-chip nanophotonics. Recently, significant attention has been directed towards anisotropic 2D materials (A2DMs) with low in-plane crystal symmetry. These materials present unique optical properties dependent on polarization and direction, offering additional degrees of freedom absent in conventional isotropic 2D materials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!