Wave-packet spreading dynamics under a noninstantaneous nonlinearity: self-trapping, defocusing, and focusing.

Phys Rev E Stat Nonlin Soft Matter Phys

Instituto de Física, Universidade Federal de Alagoas, Maceió, Brazil.

Published: May 2012

Special localized wave modes show up in several physical scenarios including BEC in optical lattices, nonlinear photonic crystals, and systems with strong electron-phonon interaction. These result from an underlying nonlinear contribution to the wave equation that is usually assumed to be instantaneous. Here we demonstrate that the relaxation process of the nonlinearity has a profound impact in the wave-packet dynamics and in the formation of localized modes. We illustrate this phenomenology by considering the one-electron wave packet spreading in a C60 buckball structure whose dynamics is governed by a discrete nonlinear Schrödinger equation with a Debye relaxation of the nonlinearity. We report the full phase diagram related to the spacial extension of the asymptotic wave packet and unveil a complex wave-packet dynamical behavior.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.85.057201DOI Listing

Publication Analysis

Top Keywords

wave packet
8
wave-packet spreading
4
spreading dynamics
4
dynamics noninstantaneous
4
noninstantaneous nonlinearity
4
nonlinearity self-trapping
4
self-trapping defocusing
4
defocusing focusing
4
focusing special
4
special localized
4

Similar Publications

Use of Resonant Acoustic Fields as Atmospheric-Pressure Ion Gates.

Anal Chem

January 2025

Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.

Ion optics are crucial for spectrometric methods such as mass spectrometry (MS) and ion mobility spectrometry (IMS). Among the wide selection of ion optics, temporal ion gates are of particular importance for time-of-flight MS (TOF-MS) and drift-tube IMS. Commonly implemented as electrostatic ion gates, these optics offer a rapid, efficient means to block ion beams and form discrete ion packets for subsequent analysis.

View Article and Find Full Text PDF

The space-time wave packet (STWP) is a type of pulsed optical field, exhibiting distinctive characteristics, including the capacity to propagate without diffraction or dispersion and to have arbitrary group velocities. However, the intensity of the STWP is constrained by the low damage threshold of some indispensable optical elements like the spatial light modulator (SLM). While optical parametric amplification (OPA) has been proposed for amplifying STWPs, spatio-temporal (ST) characteristics of amplified STWPs remain significantly unexplored.

View Article and Find Full Text PDF

A transversely isotropic diode-pumped solid-state laser is used to obtain an orthogonally dual-polarization nonplanar circular mode (NCM) under off-axis pumping in the strictly degenerate cavity. Each polarized component of the NCM outside the cavity is revealed to be individually localized on the ray orbits forming a nonplanar surface, in which the transverse patterns display multiple spots well positioned on a circular structure. An analytical representation is established to explore polarization-resolved components of the NCM by utilizing the Gaussian wave packet to directly correlate with geometrical rays.

View Article and Find Full Text PDF

Attosecond Rescattering of Laser-Assisted Electron-Proton Collision in Coulomb Potential.

J Phys Chem A

January 2025

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia.

This study investigates the motion of an electron in a Coulomb potential driven by an intense linearly polarized XUV laser pulse analyzed using Gordon-Volkov wave functions. The wave function is decomposed into spherical partial waves to model the scattered electron wave packet after the recollision with a proton. This interaction triggers high harmonic generation, producing coherent X-ray pulses with frequencies that are integer multiples of the XUV field.

View Article and Find Full Text PDF

Objectives: The actions and decisions of pilots are directly related to aviation safety. Therefore, understanding the neurological and cognitive processes of pilots during flight is essential. This study aims to investigate the EEG signals of pilots to understand the characteristic changes during the climb and descent stages of flight.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!