Electrical dark compacton generator: theory and simulations.

Phys Rev E Stat Nonlin Soft Matter Phys

Laboratory of Modelling and Simulation in Engineering and Biological Physics, Faculty of Science, University of Yaoundé I, Cameroon.

Published: May 2012

A modified Colpitts oscillator (MCO) associated with a nonlinear transmission line (NLTL) with intersite nonlinearity is introduced as a self-sustained generator of a train of modulated dark signals with compact shape. Equations of state describing the dynamics of the MCO part are derived and the stationary state is obtained. Using the Routh-Hurwitz criterion, the result of a stability analysis indicates the existence of a limit cycle in certain parameter regimes and there the oscillation of the circuit delivers pulselike electrical signals. The train of generated signals is then transformed into a train of compact modulated dark voltage solitons by the NLTL. The exactness of this analytical analysis is confirmed by numerical simulations performed on the circuit equations. Finally, simulations show the capacity of this circuit to work as a generator of compactlike dark voltage solitons. The performance of the generator, namely, the pulse width and the repetition rate, is controlled by the magnitude of the characteristic parameters of the electronic components of the device.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.85.056606DOI Listing

Publication Analysis

Top Keywords

modulated dark
8
dark voltage
8
voltage solitons
8
electrical dark
4
dark compacton
4
generator
4
compacton generator
4
generator theory
4
theory simulations
4
simulations modified
4

Similar Publications

Maintaining homeostasis is essential for continued health, and the progressive decay of homeostatic processes is a hallmark of ageing. Daily environmental rhythms threaten homeostasis, and circadian clocks have evolved to execute physiological processes in a manner that anticipates, and thus mitigates, their effects on the organism. Clocks are active in almost all cell types; their rhythmicity and functional output are determined by a combination of tissue-intrinsic and systemic inputs.

View Article and Find Full Text PDF

Two-dimensional (2D) hexagonal boron nitride (hBN) has garnered significant attention due to its exceptional thermal and chemical stability, excellent dielectric properties, and unique optical characteristics, making it widely used in deep ultraviolet (DUV) applications. However, the integration of hBN with plasmonic materials in the visible region (532 nm) has not been fully explored, particularly in terms of morphology regulation and size control of mono- and bimetallic nanoparticles (BMNPs) namely gold (Au), silver (Ag) and Au-Ag. A Schottky junction-based metal-semiconductor contact configuration is employed to achieve hot-carrier reflections on the metal side, enhancing the quantum efficiency of the photodetector.

View Article and Find Full Text PDF

Light regulation of flavin reduction by NAD(P)H: activation of 2-haloacrylate hydratase.

Arch Biochem Biophys

December 2024

Department of Biochemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 20461; Department of Chemistry, Missouri University of Science and Technology, Rolla, MO, 65409. Electronic address:

We report a novel light-dependent activation mechanism for 2-haloacrylate hydratase (2HAH), a flavin-depu change endent dehalogenase. Initial assays revealed inconsistent enzyme activity, stabilized only after chemical reduction or exposure to bright light. Spectroscopic analysis showed that light accelerates flavin reduction by NAD(P)H, completing in 30 seconds under bright light versus slow reduction in the dark.

View Article and Find Full Text PDF

Targeting macrophage circadian rhythms with microcurrent stimulation to activate cancer immunity through phagocytic defense.

Theranostics

January 2025

Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan.

Macrophage phagocytosis plays a role in cancer immunotherapy. The phagocytic activity of macrophages, regulated by circadian clock genes, shows time-dependent variation. Intervening in the circadian clock machinery of macrophages is a potentially novel approach to cancer immunotherapy; however, data on this approach are scarce.

View Article and Find Full Text PDF

Herein, the photophysical, photochemical properties and photogenerated excited state dynamics of two new Ru(II) complexes, viz. [Ru(p-ttp)(bpy)(PTA)]2+ [1]2+, [Ru(p-ttp)(phen)(PTA)]2+ [2]2+ having a phosphorus-based ligand PTA [p-ttp = p-tolyl terpyridine; bpy = 2,2'-bipyridyl; phen = 1,10-phenthroline and PTA = 1,3,5-triaza-7-phosphaadamantane] are reported. Upon excitation with 470 nm LED, [1]2+ and [2]2+ neither undergo ligand release nor exhibit room temperature luminescence/1O2 generation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!