In this study the direct-simulation Monte Carlo (DSMC) method is utilized to investigate thermal characteristics of micro- or nanocavity flow. The rarefied cavity flow shows unconventional behaviors which cannot be predicted by the Fourier law, the constitutive relation for the continuum heat transfer. Our analysis in this study confirms some recent observations and shows that the gaseous flow near the top-left corner of the cavity is in a strong nonequilibrium state even within the early slip regime, Kn=0.005. As we obtained slip velocity and temperature jump on the driven lid of the cavity, we reported meaningful discrepancies between the direct and macroscopic sampling of rarefied flow properties in the DSMC method due to existence of nonequilibrium effects in the corners of cavity. The existence of unconventional nonequilibrium heat transfer mechanisms in the middle of slip regime, Kn=0.05, results in the appearance of cold-to-hot heat transfer in the microcavity. In the current study we demonstrate that existence of such unconventional heat transfer is strongly dependent on the Reynolds number and it vanishes in the large values of the lid velocity. As we compared DSMC solution with the results of regularized 13 moments (R13) equations, we showed that the thermal characteristic of the microcavity obtained by the R13 method coincides with the DSMC prediction. Our investigation also includes the analysis of molecular entropy in the microcavity to explain the heat transfer mechanism with the aid of the second law of thermodynamics. To this aim, we obtained the two-dimensional velocity distribution functions to report the molecular-based entropy distribution, and show that the cold-to-hot heat transfer in the cavity is well in accordance with the second law of thermodynamics and takes place in the direction of increasing entropy. At the end we introduce the entropy density for the rarefied flow and show that it can accurately illustrate departure from the equilibrium state.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.85.056310 | DOI Listing |
Microbiol Spectr
January 2025
Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA.
Tongue swabs represent a potential alternative to sputum as a sample type for detecting pulmonary tuberculosis (TB) with molecular diagnostic tests. The methods used to process tongue swabs for testing in the World Health Organization-recommended Xpert MTB/RIF Ultra (Xpert Ultra) assay vary greatly. Here, we aimed to identify the optimal tongue swab processing for Xpert Ultra testing.
View Article and Find Full Text PDFSmall
January 2025
Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200433, China.
Thermal management is a key link in improving energy utilization and preparing insulation materials with excellent performance is the core technological issue. Complex and irregular pore structures of insulation materials hinder the exploration of structure-property relationships and the further promotion of material performance. Ordered mesoporous silica (OMS) is a kind of porous material with ordered frameworks.
View Article and Find Full Text PDFLasers Med Sci
January 2025
Biotechnology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Islamic Republic of Iran.
Photothermal therapy, in which a laser is an effective tool, is a promising method for cancer treatment. Laser parameters, including power, irradiation time, type of laser radiation (continuous or chopped), and the concentration of the photothermal agent, can affect the efficiency of this method. Therefore, this study investigated and compared the effects of different laser parameters on the efficiency of photothermal treatment for cervical cancer, which is the fourth most prevalent cancer in women.
View Article and Find Full Text PDFSci Rep
January 2025
College of Engineering, Applied Science University (ASU), Manama, Kingdom of Bahrain.
This paper presents an in-depth analytical investigation into the time-dependent flow of a Casson hybrid nanofluid over a radially stretching sheet. The study introduces the effects of magnetic fields and thermal radiation, along with velocity and thermal slip, to model real-world systems for enhancing heat transfer in critical industrial applications. The hybrid nanofluid consists of three nanoparticles-Copper and Graphene Oxide-suspended in Kerosene Oil, selected for their stable and superior thermal properties.
View Article and Find Full Text PDFBiomed Phys Eng Express
January 2025
Ingeniería y Tecnología, Universidad Nacional Autonoma de Mexico Facultad de Estudios Superiores Cuautitlan, Av. 1o de Mayo S/N, Santa María las Torres, Campo Uno, 54740 Cuautitlán Izcalli, Edo. de Méx., Cuautitlan Izcalli, Estado de México, 54740, MEXICO.
Hemodialysis is a crucial procedure for removing toxins and waste from the body when kidneys fail to perform this function effectively. This study addresses the need to improve the efficiency and biocompatibility of membranes used in dialyzers. We simulate fluid flow through two types of membranes, Cuprophan (cellulosic) and AN69ST (synthetic), to understand the complex mechanisms involved and quantify key variables such as pressure, concentration, and flow.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!