Forecasting synchronizability of complex networks from data.

Phys Rev E Stat Nonlin Soft Matter Phys

School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, 85287, USA.

Published: May 2012

Given a complex networked system whose topology and dynamical equations are unknown, is it possible to foresee that a certain type of collective dynamics can potentially emerge in the system, provided that only time-series measurements are available? We address this question by focusing on a commonly studied type of collective dynamics, namely, synchronization in coupled dynamical networks. We demonstrate that, using the compressive-sensing paradigm, even when the coupling strength is not uniform so that the network is effectively weighted, the full topology, the coupling weights, and the nodal dynamical equations can all be uncovered accurately. The reconstruction accuracy and data requirement are systematically analyzed, in a process that includes a validation of the reconstructed eigenvalue spectrum of the underlying coupling matrix. A master stability function (MSF), the fundamental quantity determining the network synchronizability, can then be calculated based on the reconstructed dynamical system, the accuracy of which can be assessed as well. With the coupling matrix and MSF fully uncovered, the emergence of synchronous dynamics in the network can be anticipated and controlled. To forecast the collective dynamics on complex networks is an extremely challenging problem with significant applications in many disciplines, and our work represents an initial step in this important area.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.85.056220DOI Listing

Publication Analysis

Top Keywords

collective dynamics
12
complex networks
8
dynamical equations
8
type collective
8
coupling matrix
8
forecasting synchronizability
4
synchronizability complex
4
networks data
4
data complex
4
complex networked
4

Similar Publications

Cross-Cultural Sense-Making of Global Health Crises: A Text Mining Study of Public Opinions on Social Media Related to the COVID-19 Pandemic in Developed and Developing Economies.

J Med Internet Res

January 2025

Unitat de Recerca i Innovació, Gerència d'Atenció Primària i a la Comunitat de la Catalunya Central, Institut Català de la Salut, Sant Fruitós de Bages, Spain.

Background: The COVID-19 pandemic reshaped social dynamics, fostering reliance on social media for information, connection, and collective sense-making. Understanding how citizens navigate a global health crisis in varying cultural and economic contexts is crucial for effective crisis communication.

Objective: This study examines the evolution of citizen collective sense-making during the COVID-19 pandemic by analyzing social media discourse across Italy, the United Kingdom, and Egypt, representing diverse economic and cultural contexts.

View Article and Find Full Text PDF

Sedimentation and structure of squirmer suspensions under gravity.

Soft Matter

January 2025

Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, 28040 Madrid, Spain.

The effect of gravity on the collective motion of living microswimmers, such as bacteria and micro-algae, is pivotal to unravel not only bio-convection patterns but also the settling of bacterial biofilms on solid surfaces. In this work, we investigate suspensions of microswimmers under the influence of a gravitational field and hydrodynamics, simulated the dissipative particle dynamics (DPD) coarse-grained model. We first study the collective sedimentation of passive colloids and microswimmers of the puller and pusher types upon increasing the imposed gravitational field and compare them with previous results.

View Article and Find Full Text PDF

This paper addresses the author's current understanding of the physics of interactions in polymers under a voltage field excitation. The effect of a voltage field coupled with temperature to induce space charges and dipolar activity in dielectric materials can be measured by very sensitive electrometers. The resulting characterization methods, thermally stimulated depolarization (TSD) and thermal-windowing deconvolution (TWD), provide a powerful way to study local and cooperative relaxations in the amorphous state of matter that are, arguably, essential to understanding the glass transition, molecular motions in the rubbery and molten states and even the processes leading to crystallization.

View Article and Find Full Text PDF

A network of interacting ciliary tip proteins with opposing activities imparts slow and processive microtubule growth.

Nat Struct Mol Biol

January 2025

Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands.

Cilia are motile or sensory organelles present on many eukaryotic cells. Their formation and function rely on axonemal microtubules, which exhibit very slow dynamics, but the underlying mechanisms are largely unexplored. Here we reconstituted in vitro the individual and collective activities of the ciliary tip module proteins CEP104, CSPP1, TOGARAM1, ARMC9 and CCDC66, which interact with each other and with microtubules and, when mutated in humans, cause ciliopathies such as Joubert syndrome.

View Article and Find Full Text PDF

SUMMARYThe development of multicellularity represents a key evolutionary transition that is crucial for the emergence of complex life forms. Although multicellularity has traditionally been studied in eukaryotes, it originates in prokaryotes. Coordinated aggregation of individual cells within the confines of a colony results in emerging, higher-level functions that benefit the population as a whole.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!