The melting of an assembly of ice blocks contained in a vertical cylinder and under an unidirectional load was investigated. The total volume occupied by the ice blocks and the volume of ice were simultaneously measured which allowed one to determine the volume fraction of the ice in the cylinder. While the ice volume continuously decreases, sudden breakdowns of the total volume were observed. Large reorganizations of the whole assembly occur. However, the maximal volume fraction found just after a large reorganization decreased with time. In addition, the modifications of the pile structure were investigated using an x-ray tomography imaging before and after one collapse. As the packing is better ordered along the walls, we suggest that the motion of the piston is governed by the layer of ice blocks located along the container wall. This layer was modeled by a two-dimensional assembly of disks. The model supports the idea that the geometrical frustrations explain the dynamics of the successive reorganization due to the shrinkage of the grains. Finally, numerical simulations allow one to conclude that the dynamics of the melting of the ice blocks is governed (i) by the confinement effect which induces defects in the packing and (ii) by the low friction between the ice blocks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.85.051310 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!