Nanoscale simple-fluid behavior under steady shear.

Phys Rev E Stat Nonlin Soft Matter Phys

Department of Mechanical, Aerospace & Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA.

Published: May 2012

In this study, we use two nonequilibrium molecular dynamics algorithms, boundary-driven shear and homogeneous shear, to explore the rheology and flow properties of a simple fluid undergoing steady simple shear. The two distinct algorithms are designed to elucidate the influences of nanoscale confinement. The results of rheological material functions, i.e., viscosity and normal pressure differences, show consistent Newtonian behaviors at low shear rates from both systems. The comparison validates that confinements of the order of 10 nm are not strong enough to deviate the simple fluid behaviors from the continuum hydrodynamics. The non-Newtonian phenomena of the simple fluid are further investigated by the homogeneous shear simulations with much higher shear rates. We observe the "string phase" at high shear rates by applying both profile-biased and profile-unbiased thermostats. Contrary to other findings where the string phase is found to be an artifact of the thermostats, we perform a thorough analysis of the fluid microstructures formed due to shear, which shows that it is possible to have a string phase and second shear thinning for dense simple fluids.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.85.051202DOI Listing

Publication Analysis

Top Keywords

simple fluid
12
shear rates
12
shear
10
homogeneous shear
8
string phase
8
simple
5
nanoscale simple-fluid
4
simple-fluid behavior
4
behavior steady
4
steady shear
4

Similar Publications

Aluminum alloys have promising characteristics which make them more useful in industrial applications for thermal management and entropy of the fluidic system. Hence, the current research deals with the analysis of entropy and thermal performance of (CHO-HO)/50:50% saturated by (AA7072/AA7076/TiAIV) alloys. Traditional problem modified using enhanced characteristics of ternary alloys and hydrocarbon 50:50% base fluid.

View Article and Find Full Text PDF

A simple model of the rheological curve of HPAM solutions at different temperatures.

Sci Rep

December 2024

Laboratorio de Fluidodinámica, Facultad de Ingeniería, Universidad de Buenos Aires/CONICET, Paseo Colón 850 CABA, Buenos Aires, Argentina.

The oil and gas industry faces two significant challenges, including rising global temperatures and depletion of reserves. Enhanced recovery techniques such as polymer flooding have positioned themselves as an alternative that attracts international attention thanks to increased recovery factors with low emissions. However, existing physical models need further refinement to improve predictive accuracy and prevent design failures in polymer flooding projects.

View Article and Find Full Text PDF

Heat accumulation due to repetitive simple laser processing paths during building up a three-dimensional structure is a well-known issue that needs to be settled to reduce the excessively high residual stress and thermal deformation in a powder bed fusion (PBF) additive manufacturing process. Because of the dependency of laser path on the thermal dispersion, it is essential to analyze the heat accumulation phenomenon during laser processing. A computational fluid dynamics (CFD) analysis based on the volume of fraction method is used to optimize the laser path for minimizing the local heating up in the PBF process.

View Article and Find Full Text PDF

The variability of the apnea-hypopnea index(AHI) measured in the first and second halves of the night is significant in patients with obstructive sleep apnea hypopnea syndrome(OSAHS). This variation may be related to fluid redistribution caused by the supine position during sleep. Eighty-nine adult subjects were enrolled.

View Article and Find Full Text PDF

Magnetorheological (MR) fluids can be utilized in one of the fundamental operating modes of which the gradient pinch mode has been the least explored. In this unique mode non-uniform magnetic field distributions are taken advantage of to develop a so-called Venturi-like contraction in MR fluids. By adequately directing magnetic flux the material can be made solidified in the regions near the flow channel wall, thus creating a passage in the middle of the channel for the fluid to pass through.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!