Scaling exponents for a monkey on a tree: fractal dimensions of randomly branched polymers.

Phys Rev E Stat Nonlin Soft Matter Phys

Institut für Theoretische Physik III, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany.

Published: May 2012

AI Article Synopsis

  • The study focuses on the behavior of various transport processes, such as diffusion and self-avoiding walks, on large, randomly branched polymers through a method called renormalized dynamical field theory.
  • In particular, it examines the swollen phase and collapse transition where the polymer structures have no loops, leading to statistical behaviors similar to lattice trees.
  • The researchers calculate universal scaling exponents, including the diffusion exponent and the fractal dimension of the optimal path, and compare their theoretical findings with available numerical results for validation.

Article Abstract

We study asymptotic properties of diffusion and other transport processes (including self-avoiding walks and electrical conduction) on large, randomly branched polymers using renormalized dynamical field theory. We focus on the swollen phase and the collapse transition, where loops in the polymers are irrelevant. Here the asymptotic statistics of the polymers is that of lattice trees, and diffusion on them is reminiscent of the climbing of a monkey on a tree. We calculate a set of universal scaling exponents including the diffusion exponent and the fractal dimension of the minimal path to two-loop order and, where available, compare them to numerical results.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.85.051126DOI Listing

Publication Analysis

Top Keywords

scaling exponents
8
monkey tree
8
randomly branched
8
branched polymers
8
exponents monkey
4
tree fractal
4
fractal dimensions
4
dimensions randomly
4
polymers
4
polymers study
4

Similar Publications

On Oscillations in the External Electrical Potential of Sea Urchins.

ACS Omega

January 2025

Unconventional Computing Laboratory, University of the West of England, Coldharbour Ln, Stoke Gifford, Bristol BS16 1QY, U.K.

Sea urchins display complex bioelectric activity patterns, even with their decentralized nervous system. Electrophysiological recordings showed distinct spiking patterns. The baseline potential was about 8.

View Article and Find Full Text PDF

We propose the addition of usability validation to the extended V3 framework, now "V3+", and describe a pragmatic approach to ensuring that sensor-based digital health technologies can be used optimally at scale by diverse users. Alongside the original V3 components (verification; analytical validation; clinical validation), usability validation will ensure user-centricity of digital measurement tools, paving the way for more inclusive, reliable, and trustworthy digital measures within clinical research and clinical care.

View Article and Find Full Text PDF

The crowded bacterial cytoplasm is composed of biomolecules that span several orders of magnitude in size and electrical charge. This complexity has been proposed as the source of the rich spatial organization and apparent anomalous diffusion of intracellular components, although this has not been tested directly. Here, we use biplane microscopy to track the 3D motion of self-assembled bacterial genetically encoded multimeric nanoparticles (bGEMs) with tunable size (20 to 50 nm) and charge (-3,240 to +2,700 e) in live cells.

View Article and Find Full Text PDF

The study presents a numerical parametric investigation of flow structures in channels with a longitudinal-radial profile zR = Const and a spherical dome at the base. The goal of the study was to examine the flow structures in these channels depending on the exponent N of the profile and the height of the dome, to determine the conditions that provide optimal centripetal swirling flow, analogous to blood flow in the heart chambers and major vessels. The investigation was conducted using a comparative analysis of flow structures in channel configurations zR = Const, carried out in two stages.

View Article and Find Full Text PDF

Background: The prediction of human clearance (CL) and subcutaneous (SC) bioavailability is a critical aspect of monoclonal antibody (mAb) selection for clinical development. While monkeys are a well-accepted model for predicting human CL, other preclinical species have been less-thoroughly explored. Unlike CL, predicting the bioavailability of SC administered mAbs in humans remains challenging as contributing factors are not well understood, and preclinical models have not been systematically evaluated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!