Phase transition in the Jarzynski estimator of free energy differences.

Phys Rev E Stat Nonlin Soft Matter Phys

Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.

Published: May 2012

The transition between a regime in which thermodynamic relations apply only to ensembles of small systems coupled to a large environment and a regime in which they can be used to characterize individual macroscopic systems is analyzed in terms of the change in behavior of the Jarzynski estimator of equilibrium free energy differences from nonequilibrium work measurements. Given a fixed number of measurements, the Jarzynski estimator is unbiased for sufficiently small systems. In these systems the directionality of time is poorly defined and the configurations that dominate the empirical average, but which are in fact typical of the reverse process, are sufficiently well sampled. As the system size increases the arrow of time becomes better defined. The dominant atypical fluctuations become rare and eventually cannot be sampled with the limited resources that are available. Asymptotically, only typical work values are measured. The Jarzynski estimator becomes maximally biased and approaches the exponential of minus the average work, which is the result that is expected from standard macroscopic thermodynamics. In the proper scaling limit, this regime change has been recently described in terms of a phase transition in variants of the random energy model. In this paper this correspondence is further demonstrated in two examples of physical interest: the sudden compression of an ideal gas and adiabatic quasistatic volume changes in a dilute real gas.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.85.051108DOI Listing

Publication Analysis

Top Keywords

jarzynski estimator
16
phase transition
8
free energy
8
energy differences
8
small systems
8
jarzynski
4
transition jarzynski
4
estimator
4
estimator free
4
differences transition
4

Similar Publications

This paper addresses the complementarity and potential disparities between single-molecule and ensemble-average approaches to probe the binding mechanism of oligopeptides on inorganic solids. Specifically, we explore the peptide/gold interface owing to its significance in various topics and its suitability to perform experiments both in model and real conditions. Experimental results show that the studied peptide adopts a lying configuration upon adsorption on the gold surface and interacts through its peptidic links and deprotonated thiolate extremities, in agreement with theoretical predictions.

View Article and Find Full Text PDF

Time-asymmetric fluctuation theorem and efficient free-energy estimation.

Phys Rev E

September 2024

Department of Physics, University of California, Berkeley, Berkeley, California 94720, USA.

The free-energy difference ΔF between two high-dimensional systems is notoriously difficult to compute but very important for many applications such as drug discovery. We demonstrate that an unconventional definition of work introduced by Vaikuntanathan and Jarzynski (2008) satisfies a microscopic fluctuation theorem that relates path ensembles that are driven by protocols unequal under time reversal. It has been shown before that counterdiabatic protocols-those having additional forcing that enforces the system to remain in instantaneous equilibrium, also known as escorted dynamics or engineered swift equilibration-yield zero-variance work measurements for this definition.

View Article and Find Full Text PDF

The Jarzynski equality allows the calculation of free-energy differences using values of work measured from nonequilibrium trajectories. The number of trajectories required to accurately estimate free-energy differences in this way grows sharply with the size of work fluctuations, motivating the search for protocols that perform desired transformations with minimum work. However, protocols of this nature can involve varying temperature, to which the Jarzynski equality does not apply.

View Article and Find Full Text PDF

Insights and Challenges in Correcting Force Field Based Solvation Free Energies Using a Neural Network Potential.

J Phys Chem B

July 2024

Faculty of Chemistry, Institute of Computational Biological Chemistry, University Vienna, Währingerstr. 17, 1090 Vienna, Austria.

We present a comprehensive study investigating the potential gain in accuracy for calculating absolute solvation free energies (ASFE) using a neural network potential to describe the intramolecular energy of the solute. We calculated the ASFE for most compounds from the FreeSolv database using the Open Force Field (OpenFF) and compared them to earlier results obtained with the CHARMM General Force Field (CGenFF). By applying a nonequilibrium (NEQ) switching approach between the molecular mechanics (MM) description (either OpenFF or CGenFF) and the neural net potential (NNP)/MM level of theory (using ANI-2x as the NNP potential), we attempted to improve the accuracy of the calculated ASFEs.

View Article and Find Full Text PDF

Free-energy measuring nanopore device.

Phys Rev E

February 2024

Johns Hopkins University School of Medicine, Department of Biophysics and Biophysical Chemistry, 725 N. Wolfe Street, Baltimore, Maryland 21205, USA.

Free energies (FEs) in molecular sciences can be used to quantify the stability of folded molecules. In this article, we introduce nanopores for measuring FEs. We pull DNA hairpin-forming molecules through a nanopore, measure work, and estimate the FE change in the slow limit, and with the Jarzynski fluctuation theorem (FT) at fast pulling times.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!