We study the anomalous diffusion of a particle in an external force field whose motion is governed by nonrenewal continuous time random walks with correlated waiting times. In this model the current waiting time T_{i} is equal to the previous waiting time T_{i-1} plus a small increment. Based on the associated coupled Langevin equations the force field is systematically introduced. We show that in a confining potential the relaxation dynamics follows power-law or stretched exponential pattern, depending on the model parameters. The process obeys a generalized Einstein-Stokes-Smoluchowski relation and observes the second Einstein relation. The stationary solution is of Boltzmann-Gibbs form. The case of an harmonic potential is discussed in some detail. We also show that the process exhibits aging and ergodicity breaking.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.85.051103 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!