When high-intensity laser interaction with matter enters the regime of dominated radiation reaction, the radiation losses open the way for producing short pulse high-power γ-ray flashes. The γ-ray pulse duration and divergence are determined by the laser pulse amplitude and by the plasma target density scale length. On the basis of theoretical analysis and particle-in-cell simulations with the radiation friction force incorporated, optimal conditions for generating a γ-ray flash with a tailored overcritical density target are found.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.108.195001 | DOI Listing |
Exp Brain Res
January 2025
Center of Neurology, Division of Neuropsychology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
Vibrating muscles to manipulate proprioceptive input creates the sensation of an apparent change in body position. This study investigates whether vibrating the right biceps muscle has similar effects as vibrating the left posterior neck muscles. Based on previous observations, we hypothesized that both types of muscle vibration would shift the perception of healthy subjects' subjective straight-ahead (SSA) orientation in the horizontal plane to the left.
View Article and Find Full Text PDFPacing Clin Electrophysiol
January 2025
Section of Laboratory for Animal Experiments, Institute of Medical Science, Medical Research Support Center, Nihon University, School of Medicine, Tokyo, Japan.
Background: Neither the actual in vivo tissue temperatures reached with a novel contact force sensing catheter with a mesh-shaped irrigation tip (TactiFlex SE, Abbott) nor the safety profile has been elucidated.
Methods: In a porcine model (n = 8), thermocouples were implanted epicardially in the superior vena cava, right pulmonary vein, and esophagus close to the inferior vena cava following a right thoracotomy. After chest closure, endocardial ablation was conducted near the thermocouples under fluoroscopic guidance.
Nanoscale
January 2025
Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chennai, India.
In this study, we demonstrate MXene (TiCT)-based coin-cell asymmetric supercapacitor (coin-cell ASC) exhibiting high energy density and high power density along with good capacitance. We synthesized mesoporous carbon (MC) by annealing alginic acid at varying temperatures (900 °C, 1000 °C and 1100 °C). Among the prepared samples, MC-1000 exhibited a highly porous structure and a higher surface area.
View Article and Find Full Text PDFACS Nano
January 2025
Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China.
Along with the development of miniaturization, integration, and high power of electronic chips in the 5G and artificial intelligence era and their urgent need for technologies enabled to solve high heat flux dissipation in limited space, investigating bioinspired extreme superwettability surfaces with high-efficiency condensation heat transfer (CHT) performance has attracted great interest in academic and industrial communities. Compared with filmwise condensation of flat hydrophilic surfaces featured with continuous liquid films, dropwise condensation of flat hydrophobic surfaces is a more efficient type of energy transport way. However, discrete condensate drops can only shed off the hydrophobic flat surfaces under gravity until their sizes reach the capillary length of liquid, e.
View Article and Find Full Text PDFSmall
January 2025
School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China.
Perovskite quantum dots (QDs) are promising optoelectronic materials. The large surface area provides an opportunity for ligand engineering to protect the QDs, while also impeding the charge transport in the QD array. Here, the solvent-mediated growth of a hierarchical zero-dimensional (HZD) architecture between CsPbI QDs is reported.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!