We demonstrate that local modulations of magnetic couplings have a profound effect on the temperature dependence of the relaxation rate of optical magnons in a wide class of antiferromagnets in which gapped excitations coexist with acoustic spin waves. In a two-dimensional collinear antiferromagnet with an easy-plane anisotropy, the disorder-induced relaxation rate of the gapped mode, Γ(imp)≈Γ(0)+A(TlnT)2, greatly exceeds the magnon-magnon damping, Γ(m-m)≈BT5, negligible at low temperatures. We measure the lifetime of gapped magnons in a prototype XY antiferromagnet BaNi2(PO4)2 using a high-resolution neutron-resonance spin-echo technique and find experimental data in close accord with the theoretical prediction. Similarly strong effects of disorder in the three-dimensional case and in noncollinear antiferromagnets are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.109.097201 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!