We propose and implement a wide-field microscopy method to retrieve the real and imaginary part of a field emitted by coherent and resonant molecular scatterers. The technique is based on wave-front sensing and does not require the use of any reference beam. We exemplify its ability in wide-field coherent anti-Stokes Raman scattering imaging and retrieve the complex anti-Stokes field while spectrally scanning a molecular vibrational resonance. This approach gives access to the background-free Raman spectrum of the targeted molecular bond.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.109.093902 | DOI Listing |
Small Methods
October 2024
Optical Bioimaging Laboratory, Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, 117576, Singapore.
Fourier ptychography (FP) is a high resolution wide-field imaging method based on the extended aperture in the Fourier space, which is synthesized from raw images with varying illumination angles. If FP is extended to coherent nonlinear optical imaging, the resolution could be further improved due to the increase of the cutoff frequency of the synthesized coherent optical transfer function (C-OTF) with respect to the order of nonlinear optical processes. However, there is a fundamental conflict between wide-field FP and nonlinear optical imaging, whereby the nonlinear optical imaging typically requires a focused excitation laser beam with high power density.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2024
Department of Chemistry, Boston University, Boston, MA, 02215, USA.
Photoacoustic (PA) emitters are emerging ultrasound sources offering high spatial resolution and ease of miniaturization. Thus far, PA emitters rely on electronic transitions of absorbers embedded in an expansion matrix such as polydimethylsiloxane (PDMS). Here, it is shown that mid-infrared vibrational excitation of C─H bonds in a transparent PDMS film can lead to efficient mid-infrared photoacoustic conversion (MIPA).
View Article and Find Full Text PDFOpt Express
February 2024
Topographic measurements of micro- or nanostructures are essential in cutting-edge scientific disciplines such as optical communications, metrology, and structural biology. Despite the advances in surface metrology, measuring micron-scale steps with wide field of view (FOV) and high-resolution remains difficult. This study demonstrates a dual-wavelength Fourier ptychographic microscopy for high-resolution topographic measurement across a wide FOV using an aperture scanning structure.
View Article and Find Full Text PDFSensors (Basel)
January 2024
Department of Systems Science, Graduate School of System Informatics, Kobe University, Rokkodai 1-1, Nada, Kobe 657-8501, Japan.
Quantitative phase imaging by digital holographic microscopy (DHM) is a nondestructive and label-free technique that has been playing an indispensable role in the fields of science, technology, and biomedical imaging. The technique is competent in imaging and analyzing label-free living cells and investigating reflective surfaces. Herein, we introduce a new configuration of a wide field-of-view single-shot common-path off-axis reflective DHM for the quantitative phase imaging of biological cells that leverages several advantages, including being less-vibration sensitive to external perturbations due to its common-path configuration, also being compact in size, simple in optical design, highly stable, and cost-effective.
View Article and Find Full Text PDFJ Am Chem Soc
January 2024
Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States.
In recent years, optical pump-probe microscopy (PPM) has become a vital technique for spatiotemporally imaging electronic excitations and charge-carrier transport in metals and semiconductors. However, existing methods are limited by mechanical delay lines with a probe time window up to several nanoseconds (ns) or monochromatic pump and probe sources with restricted spectral coverage and temporal resolution, hindering their amenability in studying relatively slow processes. To bridge these gaps, we introduce a dual-hyperspectral PPM setup with a time window spanning from nanoseconds to milliseconds and single-nanosecond resolution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!