In order to clarify the effects of soil properties on the stabilization process of the cadmium (Cd) added, 11 different soils were collected and incubated under a moisture content of 65%-70% at 25 degrees C. The changes of available Cd contents with incubation time (in 360 days) in Cd and Cd-Pb contaminated treatments were determined. The stabilization process was simulated using dynamic equations. The results showed that after 1.0 mg x kg(-1) Cd or 500 mg x kg(-1) Pb + 1.0 mg x kg(-1) Cd were added into the soil, the available Cd content decreased rapidly during the first 15 days, and then the decreasing rate slowed down, with an equilibrium content reached after 60 days' incubation. In Cd-Pb contaminated soils, the presence of Pb increased the content of available Cd. The stabilization process of Cd could be well described by the second-order equation and the first order exponential decay; meanwhile, dynamic parameters including equilibrium content and stabilization velocity were used to characterize the stabilization process of Cd. These two key dynamic parameters were significantly affected by soil properties. Correlation analysis and stepwise regression suggested that high pH and high cation exchange capacity (CEC) significantly retarded the availability of Cd. High pH had the paramount effect on the equilibrium content. The stabilization velocity of Cd was influenced by the soil texture. It took shorter time for Cd to get stabilized in sandy soil than in the clay.
Download full-text PDF |
Source |
---|
J Am Chem Soc
January 2025
College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China.
The rapid advancements in 3C electronic devices necessitate an increase in the charge cutoff voltage of LiCoO to unlock a higher energy density that surpasses the currently available levels. However, the structural devastation and electrochemical decay of LiCoO are significantly exacerbated, particularly at ≥4.5 V, due to the stress concentration caused by more severe lattice expansion and shrinkage, coupled with heterogeneous Li intercalation/deintercalation reactions.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Martensstraße 7, 91058 Erlangen, Germany.
Emerging photovoltaics for outer space applications are one of the many examples where radiation hard molecular semiconductors are essential. However, due to a lack of general design principles, their resilience against extra-terrestrial high-energy radiation can currently not be predicted. In this work, the discovery of radiation hard materials is accelerated by combining the strengths of high-throughput, lab automation and machine learning.
View Article and Find Full Text PDFPLoS One
January 2025
Center of Medical and Bio-Allied Health Sciences Research (CMBHSR), Ajman University, Ajman, United Arab Emirates.
Epigenetic processes are the critical events in carcinogenesis. Histone modification plays a crucial role in gene expression regulation, where histone deacetylases (HDACs) are key players in epigenetic processes. Inhibiting HDACs has shown promise in modern cancer therapy.
View Article and Find Full Text PDFACS Nano
January 2025
School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia.
Implantable systems with chronic stability, high sensing performance, and extensive spatial-temporal resolution are a growing focus for monitoring and treating several diseases such as epilepsy, Parkinson's disease, chronic pain, and cardiac arrhythmias. These systems demand exceptional bendability, scalable size, durable electrode materials, and well-encapsulated metal interconnects. However, existing chronic implantable bioelectronic systems largely rely on materials prone to corrosion in biofluids, such as silicon nanomembranes or metals.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Department of Chemistry, Khalifa University, SAN Campus, Abu Dhabi, United Arab Emirates.
During the process of developing smart chiroptical luminophores, small chiral organic dyes have emerged as candidates of utmost importance. In this regard, the chiral variants of boron dipyrromethene (BODIPY) serve as suitable molecules owing to their excellent photophysical properties such as high fluorescence quantum yields, narrow emission bandwidths with high peak intensities, high photo and chemical stability, and higher molar extinction coefficients. Thus, the last decade observed an influx of research from various research groups for the induction of chirality in originally achiral BODIPY.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!