An interplay between growth, glucose regulation and hypertrophic cardiomyopathy (HCM) may exist, but has not been studied in detail. The purpose of this study was to characterize morphometric features, insulin-like growth factor-1 (IGF-1) and glucose metabolism in Maine Coon cats with HCM. Body weight, body condition score (BCS), head length and width, and abdominal circumference were measured in Maine Coon cats >2 years of age. Echocardiography and thoracic radiography (for measurement of humerus length, and fourth and twelfth vertebrae length) were also performed. Blood was collected for biochemistry profile, DNA testing, insulin and IGF-1. Sixteen of 63 cats had HCM [myosin binding protein C (MYBPC)+, n = 3 and MYBPC-, n = 13] and 47/63 were echocardiographically normal (MYBPC+, n = 17 and MYBPC-, n = 30). There were no significant differences in any measured parameter between MYBPC+ and MYBPC- cats. Cats with HCM were significantly older (P <0.001), heavier (P = 0.006), more obese (P = 0.008), and had longer humeri (P = 0.02) compared with the HCM- group. Cats with HCM also had higher serum glucose (P = 0.01), homeostasis model assessment (HOMA) and IGF-1 (P = 0.01) concentrations, were from smaller litters (P = 0.04), and were larger at 6 months (P = 0.02) and at 1 year of age (P = 0.03). Multivariate analysis revealed that age (P <0.001), BCS (P = 0.03) and HOMA (P = 0.047) remained significantly associated with HCM. These results support the hypothesis that early growth and nutrition, larger body size and obesity may be environmental modifiers of genetic predisposition to HCM. Further studies are warranted to evaluate the effects of early nutrition on the phenotypic expression of HCM.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5971105 | PMC |
http://dx.doi.org/10.1177/1098612X12460847 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!