The capacity of cartilage self-regeneration is considered to be limited. Joint injuries often evolve in the development of chronic wounds on the cartilage surface. Such lesions are associated with articular cartilage degeneration and osteoarthritis. Re-establishing a correct micro/macro-environment into damaged joints could stop or prevent the degenerative processes. This study investigated the effect of polydeoxyribonucleotides (PDRNs) on cartilage degradation in vitro and on cartilage extracted cells. The activities of matrix metalloproteinases 2 and 9 were measured in PDRN-treated cells and in controls at days 0 and 30 of culture. Human nasal cartilage explants were cultured, and the degree of proteoglycan degradation was assessed by measuring the amount of glycosaminoglycans released into the culture medium. The PDRN properties compared with controls were tested on cartilage tissues to evaluate deposition of extracellular matrix. Chondrocytes treated with PDRNs showed a physiological deposition of extracellular matrix (aggrecan and type II collagen: Western blot, IFA, fluorescence activated cell sorting, Alcian blue and safranin O staining). PDRNs were able to inhibit proteoglycan degradation in cartilage explants. The activities of matrix metalloproteinases 2 and 9 were reduced in all PDRN-treated samples. Our results indicate that PDRNs are suitable for a long-term cultivation of in vitro cartilage and have therapeutic effects on chondrocytes by protecting cartilage.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbf.2875DOI Listing

Publication Analysis

Top Keywords

cartilage
11
cartilage degradation
8
vitro cartilage
8
activities matrix
8
matrix metalloproteinases
8
cartilage explants
8
proteoglycan degradation
8
deposition extracellular
8
extracellular matrix
8
protective effects
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!