Martian surface microbial inhabitants would be challenged by a constant and unimpeded flux of UV radiation, and the study of analog model terrestrial environments may be of help to understand how such life forms could survive under this stressful condition. One of these environments is the Atacama Desert (Chile), a well-known Mars analog due to its extreme dryness and intense solar UV radiation. Here, we report the microbial diversity at five locations across this desert and the isolation of UVC-tolerant microbial strains found in these sites. Denaturing gradient gel electrophoresis (DGGE) of 16S rDNA sequences obtained from these sites showed banding patterns that suggest distinct and complex microbial communities. Analysis of 16S rDNA sequences obtained from UV-tolerant strains isolated from these sites revealed species related to the Bacillus and Pseudomonas genera. Vegetative cells of one of these isolates, Bacillus S3.300-2, showed the highest UV tolerance profile (LD(10) = 318 J m(2)), tenfold higher than a wild-type strain of Escherichia coli. Thus, our results show that the Atacama Desert harbors a noteworthy microbial community that may be considered for future astrobiological-related research in terms of UV tolerance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00248-012-0121-z | DOI Listing |
Plant Mol Biol
December 2024
Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA/CSIC), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain.
Global climate change exacerbates abiotic stresses, as drought, heat, and salt stresses are anticipated to increase significantly in the coming years. Plants coexist with a diverse range of microorganisms. Multiple inter-organismic relationships are known to confer benefits to plants, including growth promotion and enhanced tolerance to abiotic stresses.
View Article and Find Full Text PDFAnn Bot
December 2024
Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
Background And Aims: Nolana mollis is a dominant plant species in the hyperarid Atacama Desert. A previous hypothesis states that N. mollis owes its success to the condensation of atmospheric water from undersaturated air onto its leaf surfaces by exuded salts, and absorption of this water by its leaves, or by shallow roots following drip onto the soil surface; living roots of N.
View Article and Find Full Text PDFMicrobiol Resour Announc
December 2024
Department of Biology, Northeastern University College of Science, Boston, Massachusetts, USA.
The Atacama Desert is home to bacteria that use biofilms as a means of protecting themselves against the harsh environment. To inform research regarding this survival mechanism, we cultured and sequenced the genomes of three sp. isolates from Atacama Desert soil.
View Article and Find Full Text PDFJ Low Temp Phys
May 2024
Department of Physics, Princeton University, Princeton, 08540 NJ USA.
The Simons Observatory (SO) is a cosmic microwave background instrumentation suite in the Atacama Desert of Chile. More than 65,000 polarization-sensitive transition-edge sensor (TES) bolometers will be fielded in the frequency range spanning 27 to 280 GHz, with three separate dichroic designs. The mid-frequency 90/150 GHz and ultra-high-frequency 220/280 GHz detector arrays, fabricated at NIST, account for 39 of 49 total detector modules and implement the feedhorn-fed orthomode transducer-coupled TES bolometer architecture.
View Article and Find Full Text PDFMicroorganisms
November 2024
Laboratory of Biochemistry, Biomedical Department, Health Sciences Faculty, Centre for Biotechnology and Bioengineering (CeBiB), Universidad de Antofagasta, Antofagasta 1240000, Chile.
The Amuyo Ponds (APs) are a group of three brackish hydrothermal lagoons located at 3700 m above sea level in a pre-Andean setting in the Atacama Desert. Each pond shows a conspicuous green (GP), red (RP), or yellow (YP) coloration, and discharges water rich in arsenic and boron into the Caritaya River (Camarones Basin, northern Chile). Microorganisms are subjected to harsh environmental conditions in these ponds, and the microbial composition and diversity in the Amuyo Ponds' sediments are unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!