Chronic toxicity of tire and road wear particles to water- and sediment-dwelling organisms.

Ecotoxicology

ChemRisk, 20 Stanwix Street, Suite 505, Pittsburgh, PA 15222, USA.

Published: January 2013

Tire and road wear particles (TRWP) consist of a complex mixture of rubber, and pavement released from tires during use on road surfaces. Subsequent transport of the TRWP into freshwater sediments has raised some concern about the potential adverse effects on aquatic organisms. Previous studies have shown some potential for toxicity for tread particles, however, toxicity studies of TRWP collected from a road simulator system revealed no acute toxicity to green algae, daphnids, or fathead minnows at concentrations up to 10,000 mg/kg under conditions representative of receiving water bodies. In this study, the chronic toxicity of TRWP was evaluated in four aquatic species. Test animals were exposed to whole sediment spiked with TRWP at concentrations up to 10,000 mg/kg sediment or elutriates from spiked sediment. Exposure to TRWP spiked sediment caused mild growth inhibition in Chironomus dilutus but had no adverse effect on growth or reproduction in Hyalella azteca. Exposure to TRWP elutriates resulted in slightly diminished survival in larval Pimephales promelas but had no adverse effect on growth or reproduction in Ceriodaphnia dubia. No other endpoints in these species were affected. These results, together with previous studies demonstrating no acute toxicity of TRWP, indicate that under typical exposure conditions TRWP in sediments pose a low risk of toxicity to aquatic organisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7329783PMC
http://dx.doi.org/10.1007/s10646-012-0998-9DOI Listing

Publication Analysis

Top Keywords

trwp
9
chronic toxicity
8
tire road
8
road wear
8
wear particles
8
aquatic organisms
8
previous studies
8
acute toxicity
8
concentrations 10000 mg/kg
8
toxicity trwp
8

Similar Publications

Tire and road wear particles (TRWPs) are an appreciable source of microplastics (MPs); however, knowledge of their large-scale occurrence and mass flux based on robust sampling and quantification is limited. Herein, the first city-wide survey of TRWPs across environmental compartments (road dust, snowbank, water, and sediment from rivers and lakes) along four ring roads (beltways) in Beijing was performed. TRWP concentrations ( = 74) were quantified using bonded-sulfur as a marker to reveal the city-wide spatial distributions and adopted to establish a framework estimating TRWP emission factors (EFs) and mass flux from generation to remote atmospheric, terrestrial, and aquatic transport.

View Article and Find Full Text PDF

In the range of 5-6 Mt/y tire wear particles (TWP) are emitted from vehicles in both developed and emerging countries. In an attempt to reduce these emissions, new regulations will come into force in the EU and USA, although currently no oversight methods are actually in place. This study proposes a method for assessing direct TWP emissions (TWP) from vehicles.

View Article and Find Full Text PDF

Quantification and occurrence of 39 tire-related chemicals in urban and rural aerosol from Saxony, Germany.

Environ Int

December 2024

Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Analytical Chemistry, Permoserstrasse 15, 04318 Leipzig, Germany; University of Leipzig, Institute for Analytical Chemistry, Linnéstrasse 3, 04103 Leipzig, Germany. Electronic address:

Tire and road wear particles (TRWP) are a major contributor to non-exhaust traffic emissions, but their contribution to and dynamics in urban aerosol is not well known. Urban particulate matter (PM) in the size fraction below 10 µm (PM) from two German cities was collected over 2 weeks and analysed for 39 tire-related chemicals, including amines, guanidines, ureas, benzothiazoles, p-phenylenediamines, quinolines and several transformation products (TPs). Of these, 37 compounds were determined in PM at median concentrations of 212 pg/m for 1,3-diphenylguanidine (DPG) and 132 pg/m for benzothiazole-2-sulfonic acid (BTSA); 10 of the compounds have not been reported in urban aerosol before.

View Article and Find Full Text PDF

Tire and road wear particles (TRWP) are generated at the frictional interface between tires and the road surface. This mixture of tire tread and road pavement materials can migrate from roads into nearby water bodies during precipitation events. The absence of mass-based measurements in marine environments introduces uncertainty in environmental risk assessments and fate and transport models.

View Article and Find Full Text PDF

Comparison of reference libraries for the detection of tire-derived microplastics (TMPs).

Water Sci Technol

November 2024

Department of Civil and Environmental Engineering, School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1, Minami-osawa, Hachioji-city, Tokyo 192-0397, Japan.

Introducing microplastics (MPs) into the marine environment is a global problem. Tire-derived microplastics (TMPs) are estimated to account for 60% of all secondary MPs dispersed in aquatic environments. To effectively detect TMPs in environmental samples using micro-Fourier transform infrared (μFTIR) spectroscopy, a high-quality reference library is essential.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!