D-Dopachrome tautomerase is an enzyme related by amino acid sequence and catalytic activity to macrophage migration inhibitory factor. Both of these small molecules are pro-inflammatory cytokines mediating broad innate immune responses. Although it is well established that the gene product of D-dopachrome tautomerase is widely expressed in liver and kidney cells, no study has mapped the distribution pattern of this tautomeric enzyme in the mammalian nervous system. Here, we address this void by characterizing the cellular localization of D-dopachrome tautomerase in the adult mouse brain. Two well-characterized polyclonal antibodies were used for Western blotting and immunohistochemical localization of the endogenous tautomeric enzyme. Our results show that D-dopachrome tautomerase is present throughout the brain parenchyma with a large fraction of heterogeneous interneurons harboring a stable and robust expression of the enzyme. These data point to a potential involvement of D-dopachrome tautomerase activity in the mature mouse brain, and suggest some functional and evolutionary relationship between innate immunity and tautomerization of D-dopachrome in mammalian species.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroscience.2012.09.009DOI Listing

Publication Analysis

Top Keywords

d-dopachrome tautomerase
24
mouse brain
12
tautomeric enzyme
8
d-dopachrome
7
tautomerase
6
distribution maps
4
maps d-dopachrome
4
tautomerase mouse
4
brain
4
brain d-dopachrome
4

Similar Publications

Consisting of more than 11,000 members distributed over five families, the tautomerase superfamily (TSF) is a large collection of proteins with diverse biological functions. While much attention has been given to individual TSF enzymes, a majority remain structurally and functionally uncharacterized. Given its large size, studying a representative member of each family offers a viable approach for extracting mechanistic insights applicable to the entire superfamily.

View Article and Find Full Text PDF

Background: Macrophage migration inhibitory factor (MIF) is a highly conserved cytokine with pleiotropic properties, mainly pro-inflammatory. MIF seems to exert its pro-inflammatory features by binding to its transmembrane cellular receptor CD74. MIF also has CXCR4, which acts as a co-receptor in this inflammatory process.

View Article and Find Full Text PDF

Macrophage Migration Inhibitory Factor (MIF) and its homolog D-dopachrome Tautomerase (DDT) have been implicated as drivers of tumor progression across a variety of cancers. Recent evidence suggests MIF as a therapeutic target in immune checkpoint inhibition (ICI) resistant melanomas, however clinical evidence of MIF and particularly of DDT remain limited. This retrospective study analyzed 97 patients treated at Yale for melanoma between 2002-2020.

View Article and Find Full Text PDF

The synthesis of 1,2,3-triazoles as binders of D-dopachrome tautomerase (D-DT) for the development of dual-targeting inhibitors.

Eur J Med Chem

October 2024

Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV, Groningen, the Netherlands. Electronic address:

Despite recent advances in the treatment of cancer, the issue of therapy resistance remains one of the most significant challenges in the field. In this context, signaling molecules, such as cytokines have emerged as promising targets for drug discovery. Examples of cytokines include macrophage migration inhibitory factor (MIF) and its closely related analogue D-dopachrome tautomerase (D-DT).

View Article and Find Full Text PDF

Discovered as inflammatory cytokines, MIF and DDT exhibit widespread expression and have emerged as critical mediators in the response to infection, inflammation, and more recently, in cancer. In this comprehensive review, we provide details on their structures, binding partners, regulatory mechanisms, and roles in cancer. We also elaborate on their significant impact in driving tumorigenesis across various cancer types, supported by extensive in vitro, in vivo, bioinformatic, and clinical studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!