Versatile characterization of thiol-functionalized printed metal electrodes on flexible substrates for cheap diagnostic applications.

Biochim Biophys Acta

Center of Excellence for Functional Materials, Laboratory of Physical Chemistry, Åbo Akademi University, Porthaninkatu 3, FI-20500 Turku, Finland.

Published: September 2013

Background: Cheap, reliable, point-of-care diagnostics is a necessity for the growing and aging population of the world. Paper substrate and printing method, combined together, are the cheapest possible method for generating high-volume diagnostic sensor platforms. Electrical transduction tools also minimize the cost and enhance the simplicity of the devices.

Methods: Standard surface characterization techniques, namely contact angle measurements, atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) were used to analyze the growth of the organic thiol layers on top of the printed metal electrodes on paper substrates. The results were compared with those obtained by impedimetric electrical characterization method.

Results: This article reports the fabrication and characterization of printed metal electrodes and their functionalization by organic layers on paper and plastic substrates for biosensing and diagnostic applications. Impedimetric measurement is proposed as a simple, yet elegant, method of characterization of the organic layer growth.

Conclusions: Very good correlation was observed between the results of organic layer growth from different measurement methods, justifying the use of paper as a substrate, printing as a method for fabricating metal and organic layers and impedance as a suitable measurement method for hand-held diagnostic devices.

General Significance: This result paves the way for the fabrication of more advanced bio-recognition layers for bio-affinity sensors using a printing technology that is compatible with flexible and cheap paper substrates. This article is part of a Special Issue entitled Organic Bioelectronics - Novel Applications in Biomedicine.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbagen.2012.09.007DOI Listing

Publication Analysis

Top Keywords

printed metal
12
metal electrodes
12
diagnostic applications
8
paper substrate
8
substrate printing
8
printing method
8
paper substrates
8
organic layers
8
organic layer
8
organic
6

Similar Publications

Osseointegration is a crucial property of biomaterials used for bone defect repair. While titanium is the gold standard in craniofacial surgeries, various polymeric biomaterials are being explored as alternatives. However, polymeric materials can be bioinert, hindering integration with surrounding tissues.

View Article and Find Full Text PDF

Trans-dimensional nanocoral gold foam interfaces affords ultrasensitive detection of influenza virus.

Anal Chim Acta

February 2025

School of Laboratory Medicine, Hubei University of Chinese Medicine, 16 Huangjia Lake West Road, Wuhan, 430065, PR China; Hubei Shizhen Laboratory, Wuhan, Hubei, 430065, PR China. Electronic address:

Development of sensitive and cost-effective strategies for detecting influenza viruses is crucial to combat the spread of infectious diseases. In this study, a novel trans-dimensional nanocoral gold foam (NCGF) was fabricated on screen-printed carbon electrodes using hydrogen template electrodeposition method. This unique structure, with interconnected large and small pores, significantly increased the specific surface area and stability of the sensor.

View Article and Find Full Text PDF

Accurate quantification of neonicotinoid insecticides is pivotal to ensure environmental safety by examining and mitigating their potential harmful effects on pollinators and aquatic ecosystems. In this scenario, detection of neonicotinoid insecticide, thiamethoxam (TMX), is significant for safeguarding ecological balance and human health. Hence, we developed a highly sensitive electrochemical sensor for detection of TMX in environmental samples, utilizing a novel nanocomposite with superior electrocatalytic properties and integrating an optimized neural network for accurate data analysis.

View Article and Find Full Text PDF

Bloodstream bacterial infections, a major health concern due to rising sepsis rates, require prompt, cost-effective diagnostics. Conventional methods, like CO-based transduction, face challenges such as volatile metabolites, delayed gas-phase signaling, and the need for additional instruments, whereas electrochemical sensors provide rapid, sensitive, and efficient real-time detection. In this study, we developed a bioreceptor-free Prussian blue (PB) sensor platform for real-time bacterial growth monitoring in blood culture.

View Article and Find Full Text PDF

We propose a non-magnetic transparent heating film based on silver nanowires (Ag-NWs) for application in spin-exchange relaxation-free (SERF) magnetic field measurement devices. To achieve ultra-high sensitivity in atomic magnetometers, the atoms within the alkali metal vapor cell must be maintained in a stable and uniform high-temperature environment. Ag-NWs, as a transparent conductive material with exceptional electrical conductivity, are well suited for this application.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!