The design of the oppositely charged ink particles based on titanium dioxide and carbon black for the monochrome electrophoretic display (EPD) was reported. The white ink particles with acidic surface and black ink particles with basic surface were synthesized and sterically stabilized by long alkyl chains, which were charged oppositely by mixing with basic surfactant (OLOA 1200) and acidic surfactant (Span 80), respectively. The electrophoretic mobility and the Zeta potential were -3.87×10(-10)m(2)V(-1)s(-1) and -25.1 mV for the white ink particles, 3.79×10(-10)m(2)V(-1)s(-1) and 24.6 mV for the black ink particles. In addition, the block copolymer, poly(lauryl methacrylate)-b-poly(2-(dimethylamino)ethyl methacrylate) (PLMA-b-PDMAEMA) synthesized by atom transfer radical polymerization (ATRP), was first incorporated in the modification of the pigments for the fine encapsulation. Then, a stable dual-particle electronic ink with contrast ratio of 120:1 was prepared and encapsulated with the gelatin (GE)/sodium carboxymethylcellulose (NaCMC)/sodium dodecyl sulfate (SDS) microcapsules by complex coacervation method. Finally, the matrix character display prototype driven at a low voltage exhibited excellent performance, the contrast ratio of which was 8:1 at 9 V DC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2012.08.039 | DOI Listing |
Bioelectrochemistry
January 2025
University of Bologna, Department of Industrial Chemistry "Toso Montanari", Center of Chemical Catalysis-C(3), Via Piero Gobetti 85, 40129 Bologna, Italy. Electronic address:
Print-Light-Synthesis (PLS) combines the inkjet printing of a ruthenium precursor ink with the simultaneous photo-induced generation of ruthenium oxide films. During PLS, inkjet-printing generates on conductive as well as insulating substrates micrometer-thin reaction volumes that contain with high precision defined precursor loadings. Upon direct UV light irradiation, the Ru precursor converts to RuO while all other ink components escape in the gas phase.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Home and Art Design, Northeast Forestry University, Harbin 150040, PR China. Electronic address:
A novel, sustainable time-temperature indicator (TTI) ink based on natural pigments is introduced for food freshness monitoring. The ink, composed of hydroxyethyl cellulose (HEC), Clitoria ternatea anthocyanin, and N-hydroxyphthalimide (NHPI), was applied to art paper using screen printing. The inks were characterized through FT-IR, particle size analysis, and rheological measurements, with optimal performance achieved at Clitoria ternatea anthocyanin to NHPI ratios of 9:1 and 7:1.
View Article and Find Full Text PDFACS Omega
January 2025
School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
Water-based acrylic emulsions are a crucial component of water-based ink. Preventing visible cracks in emulsion coating during drying is a great challenge due to the high polarity and high surface tension of water. Herein, we propose that the cracking resistance of the coating can be enhanced through the incorporation of hydrophobic silica nanoparticles.
View Article and Find Full Text PDFWaste Manag
January 2025
School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China. Electronic address:
Coal fly ash, a waste byproduct of coal-fired power plants rich in silica, is produced in vast quantities, exceeding 750 million tons annually. This abundance underscores the importance of finding sustainable and value-added applications for its reuse. Silver nanoparticle-silica composites represent a class of inorganically hybrid antimicrobial agents as the protection layer of cotton fabrics.
View Article and Find Full Text PDFArch Toxicol
January 2025
STARTNETICS - Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133, Rome, Italy.
Femtosecond lasers represent a novel tool for tattoo removal as sources that can be operated at high power, potentially leading to different removal pathways and products. Consequently, the potential toxicity of its application also needs to be evaluated. In this framework, we present a comparative study of Ti:Sapphire femtosecond laser irradiation, as a function of laser power and exposure time, on water dispersions of Pigment Green 7 (PG7) and the green tattoo ink Green Concentrate (GC), which contains PG7 as its coloring agent.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!