The endocannabinoid system (ECS) may either enhance or inhibit responses to aversive stimuli, possibly caused by its modulatory activity on diverse neurotransmitters. The aim of this work was to investigate the involvement of serotonin (5-HT) and catecholamines, as well as the role of glutamatergic and GABAergic cannabinoid type 1 (CB(1)) receptor, in responses to the antidepressant-like doses of the CB(1) receptor agonist Δ(9)-tetrahydrocannabinol (THC) and the antagonist rimonabant in the forced swim test (FST). Mice received acute injections of low doses of THC (0.1 or 0.5 mg/kg) or high dose of rimonabant (3 or 10 mg/kg) after treatment with the 5-HT synthesis inhibitor pCPA (100 mg/kg, 4 days), the 5-HT(1A) receptor antagonist WAY100635 (1 mg/kg, acute) or the non-selective blocker of catecholamine synthesis, AMPT (20 mg/kg, acute). THC and rimonabant were also tested in mutant mice lacking CB(1) receptor in specific forebrain neuronal subpopulations. Both THC and rimonabant induced antidepressant-like effects, quantified as immobility in the FST. However, only THC effects were reversed by pCPA or WAY100635. In contrast, only AMPT could attenuate the rimonabant effect. We also found decreased immobility in mice lacking the CB(1) receptor in glutamatergic cortical neurons, but not in forebrain GABAergic neurons, as compared with wild-type controls. The effect of THC persisted in mutant mice with CB(1) receptor inactivation in GABAergic neurons, whereas rimonabant effects were alleviated in these mutants. Thus, employing both pharmacological and genetic tools, we could show that the ECS regulates stress responses by influencing GABAergic, glutamatergic and monoaminergic transmission. The antidepressant-like action of THC depends on serotonergic neurotransmission, whereas rimonabant effects are mediated by CB(1) receptor on GABAergic neurons and by catecholamine signaling.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuropharm.2012.09.002DOI Listing

Publication Analysis

Top Keywords

cb1 receptor
24
gabaergic neurons
12
receptor
8
forebrain neuronal
8
neuronal subpopulations
8
mg/kg acute
8
thc rimonabant
8
mutant mice
8
mice lacking
8
lacking cb1
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!