Both UDP-glucuronyltransferase (GT) and beta-glucuronidase (betaG) were assayed in untreated liver microsomes. Optimum assay conditions were established with rat liver microsomes using p-nitrophenol (pNP) and its glucuronide (pNPGA) at the pH optima of GT (7.5) and betaG (4.5). The activities of the two enzymes were compared using microsomes from rats, mice, pigs, cattle and horses, with pNP, pNPGA, and phenolphthalein as substrate, in the presence of various cofactors and inhibitors at pH 7.5 and 4.5. These data disclose pronounced differences with respect to species, substrate and other experimental conditions, thereby precluding the establishment of general optimum conditions. The two enzymes were also assayed under strictly identical conditions using pNP and pNPGA and rat liver microsomes at pH 7.5 in the presence and absence of UDP-glucuronate disodium (UDPGA), activators (ATP;UDP-N-acetylglucosamine) and inhibitors. When provided with a functional level of UDPGA, both enzymes proved active under those conditions, and a conjugation-deconjugation interplay was indicated. The two processes could be selectively and totally inhibited by Zn2+ and saccharolactone. The results suggest that conjugation-deconjugation-reconjugation cycles may be operative in the metabolism of drugs in vivo, taking place already at the level of the liver endoplasmic reticulum.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000458949DOI Listing

Publication Analysis

Top Keywords

liver microsomes
12
rat liver
8
pnp pnpga
8
liver
5
conditions
5
liver microsomal
4
microsomal beta-glucuronidase
4
beta-glucuronidase udp-glucuronyltransferase
4
udp-glucuronyltransferase udp-glucuronyltransferase
4
udp-glucuronyltransferase beta-glucuronidase
4

Similar Publications

HD561, which was designed to enhance nerve growth, was re-engineered into HD56, a carboxylic acid ester prodrug. The goal of this study was to compare the druggability, species differences, and the correlation between in vitro and in vivo transformation of HD56 to HD561 from a pharmacokinetic (PK) perspective, offering a scientific basis for HD56's clinical research. The bidirectional transmembrane transport of HD56 and HD561 was investigated using Caco-2 cells and LLC-PK1 cells overexpressing MDR1 monolayer cells.

View Article and Find Full Text PDF

Selpercatinib (RETEVMO®) is a selective anticancer agent recently approved for thyroid and non-small cell lung cancer. Reliable analytical methods are essential for investigating its potential drug interactions. In this study, the fluorescence properties of selpercatinib were exploited for the first time to develop a sensitive high-performance liquid chromatography with fluorescence detection (HPLC-FLD) method to quantify selpercatinib in human and rat liver microsomes and rat plasma.

View Article and Find Full Text PDF

Metabolism study of two phenethylamine - derived new psychoactive substances using in silico, in vivo, and in vitro approaches.

Arch Toxicol

March 2025

Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, Shanghai, 200063, China.

New psychoactive substances (NPS) are substances that are not controlled by international drug control conventions but are abused and pose a threat to public health. Proscaline and methallylescaline are two phenylethylamines with psychoactive and stimulant effects and are also derivatives of the classic hallucinogen mescaline. However, limited toxicity information on proscaline and methallylescaline has hindered the identification of these two NPS.

View Article and Find Full Text PDF

Tamoxifen, a selective estrogen receptor modulator (SERM) used in breast cancer therapy, requires metabolic activation by CYP3A4 to exert its biological effects. This study evaluated the effects of calcium channel blockers nimodipine, nitrendipine and felodipine on tamoxifen metabolism by studying their interactions with tamoxifen in vitro and in vivo. Rat liver microsomes (RLM) and human liver microsomes (HLM) were used in this study to evaluate the inhibitory potential of nimodipine, nitrendipine and felodipine on tamoxifen metabolism in vitro.

View Article and Find Full Text PDF

Evaluation of Luteolin Nanosuspensions on Pharmacokinetics of Atorvastatin: Drug-Drug Interactions Using Rat Models.

Int J Nanomedicine

March 2025

Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China.

Purpose: The co-administration of luteolin (LUT) and atorvastatin (ATV) may drive synergetic effects on against atherosclerotic cardiovascular disease (ASCVD). This study aims to explore the pharmacokinetic (PK) drug-drug interactions (DDIs) of LUT toward ATV and the influencing mechanisms involving CYP450s and OATPs, and using the physiologically based pharmacokinetic (PBPK) models extrapolated to humans to optimize the DDIs dosage regimens for subsequent research.

Methods: Luteolin nanosuspensions lyophilized powder (LUT-NS-LP) were prepared for improving LUT's solubility and bioavailability, the effects of both LUT on the ATV CYP450s enzyme kinetics and LUT-NS-LP/LUT on the PK behavior of ATV in rats were further studied by UPLC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!