Systemic inflammation causes learning and memory deficits through mechanisms that remain poorly understood. Here, we studied the pathogenesis of memory loss associated with inflammation and found that we could reverse memory deficits by pharmacologically inhibiting α5-subunit-containing γ-aminobutyric acid type A (α5GABA(A)) receptors and deleting the gene associated with the α5 subunit. Acute inflammation reduces long-term potentiation, a synaptic correlate of memory, in hippocampal slices from wild-type mice, and this reduction was reversed by inhibition of α5GABA(A) receptor function. A tonic inhibitory current generated by α5GABA(A) receptors in hippocampal neurons was increased by the key proinflammatory cytokine interleukin-1β through a p38 mitogen-activated protein kinase signaling pathway. Interleukin-1β also increased the surface expression of α5GABA(A) receptors in the hippocampus. Collectively, these results show that α5GABA(A) receptor activity increases during inflammation and that this increase is critical for inflammation-induced memory deficits.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4391624PMC
http://dx.doi.org/10.1016/j.celrep.2012.08.022DOI Listing

Publication Analysis

Top Keywords

memory deficits
16
α5gabaa receptors
12
α5gabaa receptor
8
memory
6
inflammation
5
α5gabaa
5
deficits induced
4
induced inflammation
4
inflammation regulated
4
regulated α5-subunit-containing
4

Similar Publications

The transmembrane protein Synapse Differentiation Induced Gene 4 (SynDIG4) functions as an auxiliary factor of AMPA receptors (AMPARs) and plays a critical role in excitatory synapse plasticity as well as hippocampal-dependent learning and memory. Mice lacking SynDIG4 have reduced surface expression of GluA1 and GluA2 and are impaired in single tetanus-induced long-term potentiation and NMDA receptor (NMDAR)-dependent long-term depression. These findings suggest that SynDIG4 may play an important role in regulating AMPAR distribution through intracellular trafficking mechanisms; however, the precise roles by which SynDIG4 governs AMPAR distribution remain unclear.

View Article and Find Full Text PDF

Contributions of connectional pathways to shaping Alzheimer's disease pathologies.

Brain Commun

January 2025

Normandie Univ, UNICAEN, INSERM, U1237, PhIND 'Physiopathology and Imaging of Neurological Disorders', Institut Blood and Brain @ Caen-Normandie, Cyceron, 14000 Caen, France.

Four important imaging biomarkers of Alzheimer's disease, namely grey matter atrophy, glucose hypometabolism and amyloid-β and tau deposition, follow stereotypical spatial distributions shaped by the brain network of structural and functional connections. In this case-control study, we combined several predictors reflecting various possible mechanisms of spreading through structural and functional pathways to predict the topography of the four biomarkers in amyloid-positive patients while controlling for the effect of spatial distance along the cortex. For each biomarker, we quantified the relative contribution of each predictor to the variance explained by the model.

View Article and Find Full Text PDF

Background: Working memory deficit, a key feature of schizophrenia, is a heritable trait shared with unaffected siblings. It can be attributed to dysregulation in transitions from one brain state to another.

Aims: Using network control theory, we evaluate if defective brain state transitions underlie working memory deficits in schizophrenia.

View Article and Find Full Text PDF

Background: Reminiscence therapy through music is a psychosocial intervention with benefits for older patients with neurocognitive disorders. Therapies using virtual or augmented reality are efficient in ecologically assessing, and eventually training, episodic memory in older populations. We designed a semi-immersive musical game called "A Life in Songs," which invites patients to immerse themselves in a past era through visuals and songs from that time period.

View Article and Find Full Text PDF

Background: Fluoroethylnormemantine (FENM), a new Memantine (MEM) derivative, prevented amyloid-β[25-35] peptide (Aβ)-induced neurotoxicity in mice, a pharmacological model of Alzheimer's disease (AD) with high predictive value for drug discovery. Here, as drug infusion is likely to better reflect drug bioavailability due to the interspecies pharmacokinetics variation, we analyzed the efficacy of FENM after chronic subcutaneous (SC) infusion, in comparison with IP injections in two AD mouse models, Aβ-injected mice and the transgenic APP/PSEN1 (APP/PS1) line.

Methods: In Aβ-treated mice, FENM was infused at 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!