p53 mutation is associated with "gain-of-function" capabilities of human cancers. We aim to identify p53 mutations in human glioma cells and to explore the potential mechanism for mutant p53-promoted cellular growth. Whole genomic DNA was isolated from SWO-38, a human glioma cell line and amplified for the region of exons 5, 6, and 8 in p53 gene using polymerase chain reaction (PCR). By means of direct sequencing of PCR products and alignment analysis using BLAST database, a mutation of G to C transition at codon 280 of p53 exon 8 (AGA→ACA), i.e. R280T was detected in SWO-38 cells. Knockdown of R280T mutant p53 by RNA interference inhibited the GSK-3β/PTEN associated cell proliferation, and PI3K/Akt but not Wnt/β-catenin signaling pathway was involved in this process. Furthermore, depletion or overexpression of PTEN alone did not affect cell proliferation and cell cycle, implicating the impairment of PTEN function in SWO-38 cells. However, knockdown of both PTEN and p53 mutation could significantly rescue the p53 depletion-mediated growth inhibition, suggesting that the R280T mutation in glioma may promote the proliferation through an underlying mechanism related to PTEN. Our observations indicate that the R280T mutation of p53 regulates the proliferation of human glioma cells related to the GSK-3β/PTEN pathway. These findings provide valuable insights for better understanding the molecular mechanism of uncontrolled growth of glioma cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neulet.2012.09.022 | DOI Listing |
Cancer J
January 2025
Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL.
There is major interest in deintensifying therapy for isocitrate dehydrogenase-mutant low-grade gliomas, including with single-agent cytostatic isocitrate dehydrogenase inhibitors. These efforts need head-to-head comparisons with proven modalities, such as chemoradiotherapy. Ongoing clinical trials now group tumors by intrinsic molecular subtype, rather than classic clinical risk factors.
View Article and Find Full Text PDFCancer J
January 2025
From the Division of Neuro-Oncology, Department of Neurology and the Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians & Surgeons and NewYork-Presbyterian, New York, NY.
The term "low-grade glioma" historically refers to adult diffuse gliomas that exhibit a less aggressive course than the more common high-grade gliomas. In the current molecular era, "low-grade" refers to World Health Organization central nervous system grade 2 gliomas almost always with an isocitrate dehydrogenase (IDH) mutation (astrocytomas and oligodendrogliomas). The term "lower-grade gliomas" has emerged encompassing grades 2 and 3 IDH-mutant astrocytomas and oligodendrogliomas, to acknowledge that histological grade is not as important a prognostic factor as molecular features, and distinguishing them from grade 4 glioblastomas, which lack an IDH mutation.
View Article and Find Full Text PDFCancer J
January 2025
From the Department of Radiation Oncology, Ohio State University Comprehensive Cancer Center, Columbus, OH.
There has been a significant paradigm shift in the clinical management of lower-grade glioma patients given the recent updates to the 2021 World Health Organization classification along with long-term results from randomized phase III clinical trials. As a result, we are now better able to diagnose and assign patients to the most appropriate treatment course. This review provides a comprehensive summary of the most robust and reliable molecular biomarkers for adult lower-grade gliomas and discusses current challenges facing this patient population that future correlative biology studies combined with advancements in technologies could help overcome.
View Article and Find Full Text PDFJ Mol Neurosci
January 2025
Department of Pediatric Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
Primary brain tumors that were the most severe and aggressive were called glioblastoma multiforme (GBM). Cancers are caused in part by aberrant expression of circular RNA. Often referred to as competitive endogenous RNA (ceRNA), circRNA molecules act as "miRNA sponges" in cells by decreasing the inhibitory impact of miRNA on their target genes and hence raising the expression levels of those genes.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector 62, Noida, UP, 201309, India.
Metabolic reprogramming stands out as a defining characteristic of cancer, including glioblastoma (GB), enabling tumor cells to overcome growth and survival challenges in adverse conditions. The dysregulation of metabolic processes in GB is crucial to its pathogenesis, influencing both tumorigenesis and the disease's invasive tendencies. This altered metabolism supplies essential energy substrates for uncontrolled cell proliferation and also creates an immunosuppressive microenvironment, complicating conventional therapies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!