Rosuvastatin inhibits spontaneous and IL-1β-induced interleukin-6 production from human cultured osteoblastic cells.

Joint Bone Spine

Department of Clinical Medicine and Immunological Sciences, Division of Clinical Immunology, University of Siena, Policlinico Le Scotte, Viale Bracci, Siena, Italy.

Published: March 2013

AI Article Synopsis

Article Abstract

Objective: Experimental and clinical data suggest that statins may protect bone by inhibiting bone resorption and/or stimulating bone formation. Interleukin-6 (IL-6) is produced by osteoblasts, and potently stimulates osteoclast activation playing a key role in normal bone resorption as well as in post-menopausal and inflammation-driven osteoporosis. Although statins inhibit IL-6 production from different cell types, currently no data exist on osteoblasts. The aim of the study was to evaluate the effect of rosuvastatin on IL-6 production by human osteoblasts.

Methods: Osteoblasts from osteoarthritic patients were incubated with rosuvastatin (0.1-10 μmol/L)±IL-1β, and IL-6 production was evaluated as cytokine concentration in the culture medium (ELISA), as well as mRNA expression in the cells (qPCR). Putative intracellular mechanisms of the drug, such as blocking HMG-CoA-reductase, and interference in the prenylation process were investigated by the addition of mevalonate and isoprenoids. The effect of rosuvastatin±IL-1β on the anti-resorptive molecule osteoprotegerin (OPG) was also assessed (ELISA).

Results: Rosuvastatin significantly reduced IL-6 levels in the osteoblast culture medium, both in unstimulated and IL-1β-stimulated cells. This effect was reversed by mevalonate or geranylgeraniol, but not farnesol. Moreover, the drug decreased both spontaneous and IL-1β-induced IL-6 mRNA expression in osteoblasts. Conversely, rosuvastatin did not affect OPG levels in the culture medium.

Conclusion: Our results show that rosuvastatin decreases IL-6 production by osteoblasts, thereby suggesting a possible inhibiting activity on osteoclast function in an indirect way. These data may provide further rationale for employing rosuvastatin to beneficially affect bone metabolism in post-menopausal women and possibly in inflammation-driven osteoporosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbspin.2012.07.007DOI Listing

Publication Analysis

Top Keywords

il-6 production
16
spontaneous il-1β-induced
8
production human
8
bone resorption
8
inflammation-driven osteoporosis
8
culture medium
8
mrna expression
8
rosuvastatin
7
il-6
7
production
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!