Watersoaking is an ethylene-induced disorder observed in some members of the Cucurbitaceae including cucumber (Cucumis sativus L.), watermelon (Citrullus lanatus Thunb. Matsum and Nakai), and tropical pumpkin (Cucurbita moschata Duch.). Previous studies have found that immature beit-alpha cucumber (cv. Manar) exhibit watersoaking after 6d of continuous exposure to 10 μLL(-1) ethylene in air (21 kPa O(2)). The present study was designed to investigate the early dynamics of ethylene responses in immature cucumber fruit in order to provide insight into the watersoaking triggering mechanism. Changes in respiration, epidermal color, firmness, reactive oxygen species (ROS) production and electrolyte leakage were evaluated as a function of time under different ethylene concentrations and exposure duration. Ethylene concentrations exceeding 10 μLL(-1) did not accelerate changes in any of the evaluated responses. The first detectable change was a significant rise in respiration on day 2, followed by a significant rise in ROS on day 4, and significant degreening, mesocap softening, and increased electrolyte leakage on day 6; the latter responses coincident with incipient watersoaking. Varying the duration of exposure to ethylene indicated that the critical exposure time is between 2 and 4d. Notably, all deleterious responses to ethylene were suppressed under a hypoxic atmosphere. A model is proposed in which ethylene induces a sharp increase in respiration with a concomitant sharp rise in ROS, which the immature fruit is incapable of quenching. The resulting production of excess ROS leads to discoloration and membrane deterioration, leading to the release of cytoplasmic content, rapid softening, and the visual symptom of watersoaking.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jplph.2012.08.011DOI Listing

Publication Analysis

Top Keywords

reactive oxygen
8
oxygen species
8
immature cucumber
8
cucumber fruit
8
electrolyte leakage
8
ethylene concentrations
8
rise ros
8
ethylene
7
watersoaking
6
ethylene-induced overproduction
4

Similar Publications

Doxorubicin (DOXO) has long been used clinically and remains a key drug in cancer therapy. DOXO-induced cardiomyopathy (DICM) is a chronic and fatal complication that severely limits the use of DOXO. However, there are very few therapeutic agents for DICM, and there is an urgent need to identify those that can be used for a larger number of patients.

View Article and Find Full Text PDF

Abnormality of granulosa cells (GCs) is the critical cause of follicular atresia in premature ovarian failure (POF). RIPK3 is highly expressed in GCs derived from atretic follicles. We focus on uncovering how RIPK3 contributes to ovarian GC senescence.

View Article and Find Full Text PDF

Diabetic wounds are characterized by chronic inflammation, reduced angiogenesis, and insufficient collagen deposition, leading to impaired healing. Extracellular vesicles (EVs) derived from adipose-derived mesenchymal stem cells (ADSC) offer a promising cell-free therapeutic strategy, yet their efficacy and immunomodulation can be enhanced through bioactivation. In this study, we developed calcium silicate (CS)-stimulated ADSC-derived EVs (CSEV) incorporated into collagen hydrogels to create a sustained-release system for promoting diabetic wound healing.

View Article and Find Full Text PDF

Accumulation of advanced oxidative protein products exacerbate satellite glial cells activation and neuropathic pain.

Mol Med

January 2025

Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, People's Republic of China.

Background: Neuropathic pain (NP) is a debilitating condition caused by lesion or dysfunction in the somatosensory nervous system. Accumulation of advanced oxidation protein products (AOPPs) is implicated in mechanical hyperalgesia. However, the effects of AOPPs on NP remain unclear.

View Article and Find Full Text PDF

ROS-responsive nanocarrier for oral delivery of monascin and enhanced alleviation of oxidative stress.

J Biosci Bioeng

January 2025

Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China; Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China; Shantou Key Laboratory of Marine Microbial Resources and Interactions with Environment, Shantou University, Shantou 515063, China. Electronic address:

Oxidative stress, caused by excessive production of reactive oxygen species (ROS), plays a crucial role in the occurrence and development of various diseases. Monascin can scavenge ROS and alleviate oxidative stress but with a low fermentation rate and bioavailability. Here, we optimized the fermentation process to increase the production of monascin (508.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!