Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The detection of trace levels of pharmaceuticals in environmental matrices requires an analyte pre-concentration procedure to obtain the required sensitivity for quantitative determination. This research aims to develop a simple automated analytical method based on C(18) thin film solid phase microextraction (TF-SPME) for the simultaneous extraction of pharmaceutical compounds detected in surface waters. As a sample preparation method, solid phase microextraction, is a rapid, environmentally friendly, and a sensitive analytical technique which isolates and pre-concentrates trace organic pollutants from environmental water samples in a single step. High throughput analysis was achieved with the use of a robotic auto sampler which enabled parallel analyte extraction in a 96-well plate format. Application of the method was demonstrated using wastewater from pilot-scale municipal treatment plants and environmental water samples from wastewater-dominated reaches of the Grand River (adjacent Waterloo, ON) which were analysed using a liquid chromatography-mass spectrometry (LC-ESI-MS/MS) technique. The proposed method successfully determined concentrations of carbamazepine, fluoxetine, sertraline, and paroxetine in treated effluent at concentrations ranging from 240 to 3820 ng/L with a method detection limit of 2-13 ng/L with a relative standard deviation of less than 16%. Matrix effect was not observed with this method; therefore internal standards are not necessary for quantification of target compounds. The results suggest that this method is capable of detecting and quantifying many compounds present in both wastewater and wastewater-influenced surface water from multiple municipal sources. In this study, automated TF-SPME system is demonstrated as a simple and fast alternative method for high throughput analysis of pharmaceutical contaminants in environmental matrices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chroma.2012.09.011 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!