Background: Macroautophagy is an evolutionarily conserved mechanism for bulk intracellular degradation of proteins and organelles. Pathological studies have implicated macroautophagy defects in human neurodegenerative disorders of aging including Alzheimer's disease and tauopathies. Neuronal deficiency of macroautophagy throughout mouse embryonic development results in neurodevelopmental defects and early postnatal mortality. However, the role of macroautophagy in mature CNS neurons, and the relationship with human disease neuropathology, remains unclear. Here we describe mice deficient in an essential macroautophagy component, Atg7, specifically within postnatal CNS neurons.

Results: Postnatal forebrain-specific Atg7 conditional knockout (cKO) mice displayed age-dependent neurodegeneration and ubiquitin- and p62-positive inclusions. Phosphorylated tau was significantly accumulated in Atg7 cKO brains, but neurofibrillary tangles that typify end-stage human tauopathy were not apparent. A major tau kinase, glycogen synthase kinase 3β (GSK3β), was also accumulated in Atg7 cKO brains. Chronic pharmacological inhibition of tau phosphorylation, or genetic deletion of tau, significantly rescued Atg7-deficiency-mediated neurodegeneration, but did not suppress inclusion formation.

Conclusions: These data elucidate a role for macroautophagy in the long-term survival and physiological function of adult CNS neurons. Neurodegeneration in the context of macroautophagy deficiency is mediated through a phospho-tau pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3544596PMC
http://dx.doi.org/10.1186/1750-1326-7-48DOI Listing

Publication Analysis

Top Keywords

macroautophagy
8
macroautophagy deficiency
8
age-dependent neurodegeneration
8
phospho-tau pathway
8
role macroautophagy
8
cns neurons
8
accumulated atg7
8
atg7 cko
8
cko brains
8
deficiency mediates
4

Similar Publications

The role of macroautophagy in substance use disorders.

Ann N Y Acad Sci

December 2024

Department of Medicine, School of Basic Medicine, Ningbo University, Ningbo, China.

Macroautophagy, a universal cellular process, sends cellular material to lysosomes for breakdown and is often activated by stressors like hypoxia or drug exposure. It is vital for protein balance, neurotransmitter release, synaptic function, and neuron survival. The role of macroautophagy in substance use disorders is dual.

View Article and Find Full Text PDF

A unique inflammaging profile generated by T cells from people with obesity is metformin resistant.

Geroscience

December 2024

Department of Pharmacology & Nutritional Sciences, Diabetes and Obesity Research Priority Area, University of Kentucky, Lexington, KY, USA.

Article Synopsis
  • Obesity in older adults is prevalent and contributes to chronic inflammation, affecting the health of older populations.
  • Research suggests that obesity alters the immune response, particularly influencing T-cell function and the effectiveness of anti-inflammatory drugs like metformin.
  • Data reveal that metformin does not improve immune cell function in obese older adults as it does in lean individuals, indicating that obesity complicates the body's inflammatory response and must be considered in clinical studies of geroprotective treatments.
View Article and Find Full Text PDF

Review on the role of autophagy in the toxicity of nanoparticles and the signaling pathways involved.

Chem Biol Interact

December 2024

Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Department of Clinical Pharmacology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou 310006, China. Electronic address:

As the development of nanotechnology, the application of nanoproducts and the advancement of nanomedicine, the contact of nanoparticles (NPs) with human body is becoming increasingly prevalent. This escalation elevates the risk of NPs exposure for workers, consumers, researchers, and both aquatic and terrestrial organisms throughout the production, usage, and disposal stages. Consequently, evaluating nanotoxicity remains critically important, though standardized assessment criteria are still lacking.

View Article and Find Full Text PDF

Dynamic mitophagy trajectories hallmark brain aging.

Autophagy

December 2024

Translational Stem Cell Biology and Metabolism Program, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland.

Studies using mitophagy reporter mice have established steady-state landscapes of mitochondrial destruction in mammalian tissues, sparking intense interest in basal mitophagy. Yet how basal mitophagy is modified by healthy aging in diverse brain cell types has remained a mystery. We present a comprehensive spatiotemporal analysis of mitophagy and macroautophagy dynamics in the aging mammalian brain, reporting critical region- and cell-specific turnover trajectories in a longitudinal study.

View Article and Find Full Text PDF

HSPB1 [heat shock protein family B (small) member 1] and HSPB8 are essential molecular chaperones for neuronal proteostasis, as they prevent protein aggregation. Mutant HSPB1 and HSPB8 primarily harm peripheral neurons, resulting in axonal Charcot-Marie-Tooth neuropathies (CMT2). Macroautophagy/autophagy is a shared mechanism by which HSPB1 and HSPB8 mutations cause neuronal dysfunction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!