Epidemiological evidence links chronic bacterial infections to the increased incidence of certain types of cancer but the molecular mechanisms by which bacteria contribute to tumour initiation and progression are still poorly characterized. Here we show that chronic exposure to the genotoxin cytolethal distending toxin (CDT) of Gram-negative bacteria promotes genomic instability and acquisition of phenotypic properties of malignancy in fibroblasts and colon epithelial cells. Cells grown for more than 30 weeks in the presence of sublethal doses of CDT showed increased mutation frequency, and accumulation of chromatin and chromosomal aberrations in the absence of significant alterations of cell cycle distribution, decreased viability or senescence. Cell survival was dependent on sustained activity of the p38 MAP kinase. The ongoing genomic instability was associated with impaired activation of the DNA damage response and failure to efficiently activate cell cycle checkpoints upon exposure to genotoxic stress. Independently selected sublines showed enhanced anchorage-independent growth as assessed by the formation of colonies in semisolid agarose. These findings support the notion that chronic infection by CDT-producing bacteria may promote malignant transformation, and point to the impairment of cellular control mechanisms associated with the detection and repair of DNA damage as critical events in the process.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4136655 | PMC |
http://dx.doi.org/10.1111/cmi.12034 | DOI Listing |
Hematol Oncol
January 2025
University of California Irvine, Irvine, California, USA.
Despite the study of BCR::ABL1-positive and -negative myeloproliferative neoplasms (MPNs) providing seminal insights into cancer biology, tumor evolution and precision oncology over the past half century, significant challenges remain. MPNs are clonal hematopoietic stem cell-derived neoplasms with heterogenous clinical phenotypes and a clonal architecture which impacts the often-complex underlying genetics and microenvironment. The major driving molecular abnormalities have been well characterized, but debate on their role as disease-initiating molecular lesions continues.
View Article and Find Full Text PDFNPJ Precis Oncol
January 2025
Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
Pancreatic ductal adenocarcinoma (PDAC) is notably resistant to conventional chemotherapy and radiation treatment. However, clinical trials indicate that carbon ion radiotherapy (CIRT) with concurrent gemcitabine is effective for unresectable locally advanced PDAC. This study aimed to identify patient characteristics predictive of CIRT response.
View Article and Find Full Text PDFNat Commun
January 2025
University of Glasgow Centre for Parasitology, The Wellcome Centre for Integrative Parasitology, University of Glasgow, School of Infection and Immunity, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, United Kingdom.
The Trypanosoma brucei genome is structurally complex. Eleven megabase-sized chromosomes each comprise a transcribed core flanked by silent subtelomeres, housing thousands of Variant Surface Glycoprotein (VSG) genes. Additionally, hundreds of sub-megabase chromosomes contain 177 bp repeats of unknown function, and VSG transcription sites localise to many telomeres.
View Article and Find Full Text PDFSci Rep
January 2025
Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), 6th of October City, Egypt.
Nanotherapy has emerged as a promising strategy for the targeted and efficient treatment of melanoma, the most aggressive and lethal form of skin cancer, with minimized systemic toxicity. However, the therapeutic efficacy of cobalt oxide nanoparticles (CoONPs) in melanoma treatment remains unexplored. This study aimed to assess the therapeutic potential of CoONPs in melanoma treatment by evaluating their impact on cell viability, genomic DNA and mitochondrial integrity, reactive oxygen species (ROS) generation and apoptosis induction in melanoma A-375 cells.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, Guangdong, China. Electronic address:
R-loops, three-stranded nucleic acid structures composed of RNA-DNA hybrids, are increasingly recognized as central regulators of genomic stability and transcription. These structures play critical roles across various cellular processes, including DNA replication, repair, and gene regulation, with significant implications for stem cell biology and disease pathogenesis. This review comprehensively explores the molecular underpinnings of R-loop formation, emphasizing the dual nature of R-loops in both facilitating normal cellular functions and contributing to genomic instability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!