Rotational dynamics of a dipolar supercooled liquid.

J Chem Phys

Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Campus Nord-Mòdul B4, c/ Jordi Girona 1-3, 08034 Barcelona, Spain.

Published: September 2012

We study the rotational dynamics of a supercooled molecular liquid by means of molecular dynamics simulations. The system under investigation is composed of rigid diatomic molecules with an associate dipole moment. At room temperature, orientational correlations decrease rapidly with increasing distances. Upon cooling, angles between dipole moments of molecules within the first coordination shell decrease. As for the dynamical properties, rotational diffusion coefficients decrease with temperature at a smaller rate than translational diffusion coefficients do, and the critical temperature associated with the former is lower than the one corresponding to their translational counterparts. Translation and rotation about an inertial axis are uncorrelated, whereas some coupling between translation and dipole reorientation is obtained.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4752426DOI Listing

Publication Analysis

Top Keywords

rotational dynamics
8
diffusion coefficients
8
dynamics dipolar
4
dipolar supercooled
4
supercooled liquid
4
liquid study
4
study rotational
4
dynamics supercooled
4
supercooled molecular
4
molecular liquid
4

Similar Publications

We investigate the ultrafast electron correlation effects during non-sequential double ionization (NSDI) of argon subjected to a combined femtosecond field composed of counter-rotating two-color circularly polarized (TCCP) pulse laser using a 3D classical ensemble model (CEM). Our simulation results reveal that manipulation of the carrier-envelope phase (CEP) of the external driving field modulates the dynamical behavior of the two electrons, resulting in a notable sensitivity of their momentum distribution to the relative phase of two components of the counter-rotating TCCP field. Through inversion analysis, we uncover the capability to direct electrons toward a single direction, thereby facilitating focused ion-electron collisions on the attosecond timescale.

View Article and Find Full Text PDF

The microbial aminotransferase enzyme DapC is vital for lysine biosynthesis in various Gram-positive bacteria, including . Characterization of the enzyme's conformational dynamics and identifying the key residues for ligand binding are crucial for the development of effective antimicrobials. This study employs atomistic simulations to explore and categorize the dynamics of DapC in comparison to other classes of aminotransferase.

View Article and Find Full Text PDF

Background/purpose: studies are essential for understanding cellular responses, but traditional culture systems often neglect the three-dimensional (3D) structure of real implants, leading to limitations in cellular recruitment and behavior largely governed by gravity. The objective of this study was to pioneer a novel 3D dynamic osteoblastic culture system for assessing the biological capabilities of dental implants in a more clinically and physiologically relevant manner.

Materials And Methods: Rat bone marrow-derived osteoblasts were cultured in a 24-well dish with a vertically positioned dental implant.

View Article and Find Full Text PDF

Background: The success of embolization, a minimally invasive treatment of liver cancer, could be evaluated in the operational room with cone-beam CT by acquiring a dynamic perfusion scan to inspect the contrast agent flow.

Purpose: The reconstruction algorithm must address the issues of low temporal sampling and higher noise levels inherent in cone-beam CT systems, compared to conventional CT.

Methods: Therefore, a model-based perfusion reconstruction based on the time separation technique (TST) was applied.

View Article and Find Full Text PDF

Nuclear Magnetic Resonance Study of Monoclonal Antibodies Near an Oil-Water Interface.

J Pharm Sci

January 2025

Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, USA, 32310; Center for Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA, 32310. Electronic address:

Monoclonal antibodies (mAb) represent an important class of biologic therapeutics that can treat a variety of diseases including cancer, autoimmune disorders or respiratory conditions (e.g. COVID-19).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!