Starting from the model of a single d-electron in an octahedral crystal environment, the Hamiltonian for linear and quadratic Jahn-Teller (JT) coupling and zeroth order as well as linear spin-orbit (SO) coupling in the (2)T(2g) + (2)E(g) electronic multiplet is derived. The SO coupling is described by the microscopic Breit-Pauli operator. The 10 × 10 Hamiltonian matrices are explicitly given for all linear and quadratic electrostatic couplings and all linear SO-induced couplings. It is shown that the (2)T(2g) manifold exhibits, in addition to the well-known electrostatic JT effects, linear JT couplings which are of relativistic origin, that is, they arise from the SO operator. While only the e(g) mode is JT-active in the (2)E(g) state in the nonrelativistic approximation, the t(2g) mode becomes JT-active through the SO operator. Both electrostatic as well as relativistic forces contribute to the (2)T(2g) - (2)E(g) pseudo-JT coupling via the t(2g) mode. The relevance of these analytic results for the static and dynamic JT effects in octahedral complexes containing heavy elements is discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4751439DOI Listing

Publication Analysis

Top Keywords

spin-orbit coupling
8
linear quadratic
8
2t2g 2eg
8
mode jt-active
8
t2g mode
8
coupling
5
linear
5
jahn-teller pseudo-jahn-teller
4
pseudo-jahn-teller spin-orbit
4
coupling hamiltonian
4

Similar Publications

Topological Moiré Polaritons.

Phys Rev Lett

December 2024

Clermont INP, Institut Pascal, PHOTON-N2, Université Clermont Auvergne, CNRS, F-63000 Clermont-Ferrand, France.

The combination of an in-plane honeycomb potential and of a photonic spin-orbit coupling (SOC) emulates a photonic or polaritonic analog of bilayer graphene. We show that modulating the SOC magnitude allows us to change the overall lattice periodicity, emulating any type of moiré-arranged bilayer graphene with unique all-optical access to the moiré band topology. We show that breaking the time-reversal symmetry by an effective exciton-polariton Zeeman splitting opens a large topological gap in the array of moiré flat bands.

View Article and Find Full Text PDF

Electronic quenching of sulfur induced by argon collisions.

Phys Chem Chem Phys

January 2025

Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, F-35000 Rennes, France.

An accurate potential energy model, explicitly designed for studying scattering and treating the spin-orbit and nonadiabatic couplings on an equal footing, is proposed for the S + Ar system. The model is based on the Effective Relativistic Coupling by Asymptotic Representation (ERCAR) approach, building the geometry dependence of the spin-orbit interaction a diabatisation scheme. The resulting full diabatic model is used in close-coupling calculations to compute inelastic scattering cross sections for de-excitation from the S(D) fine structure level into the P multiplet.

View Article and Find Full Text PDF

Transient Triplet Metallopnictinidenes M-Pn (M = Pd, Pt; Pn = P, As, Sb): Characterization and Dimerization.

J Am Chem Soc

January 2025

Institut für Anorganische Chemie and International Center for Advanced Studies of Energy Conversion, Georg-August-Universität Göttingen, Tammannstr 4, 37077 Göttingen, Germany.

Nitrenes (R-N) have been subject to a large body of experimental and theoretical studies. The fundamental reactivity of this important class of transient intermediates has been attributed to their electronic structures, particularly the accessibility of triplet vs singlet states. In contrast, electronic structure trends along the heavier pnictinidene analogues (R-Pn; Pn = P-Bi) are much less systematically explored.

View Article and Find Full Text PDF

Magnetic systems, wherein competing degree of freedoms arising from spin orbit coupling and crystal electric field lead to non-trivial magnetic ground states, remains in the forefront of research in condensed matter physics. Here, we present a comprehensive investigation on three-dimensional rare-earth based spin systems NdTaO4 and NdNbO4, where the Nd ions sit on a stretched diamond lattice. No signatures of long-range ordering and spin freezing are observed down to 1.

View Article and Find Full Text PDF

Relativistic and electron-correlation effects in static dipole polarizabilities for group 12 elements.

Phys Chem Chem Phys

January 2025

Institute of Applied Analysis and Numerical Simulation, University of Stuttgart, Pfaffenwaldring 57, Stuttgart, 70569, Germany.

In this study, we report a comprehensive calculation of the static dipole polarizabilities of group 12 elements using the finite-field approach combined with the relativistic coupled-cluster method, including single, double, and perturbative triple excitations. Relativistic effects are systematically investigated, including scalar-relativistic, spin-orbit coupling (SOC), and fully relativistic Dirac-Coulomb contributions. The final recommended polarizability values are 37.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!