Speeding up a bidirectional DNA walking device.

Langmuir

Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.

Published: October 2012

A strategy to speed up DNA walking devices through the use of DNA catalysts has been developed. The DNA walker is designed to move on a three-foothold molecular track with the assistance of fuel strands. The movement can be accelerated in the presence of catalysts. The motor could be halted at a desired location by a simple control, and the locomotion is about 1 order of magnitude faster than previous hybridization-based walker. Additionally, one branch of the walker can be designed to capture and transfer protein or some other inorganic molecules along the designed track with easy control, which makes our engineered DNA system more versatile.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la303332sDOI Listing

Publication Analysis

Top Keywords

dna walking
8
walker designed
8
dna
5
speeding bidirectional
4
bidirectional dna
4
walking device
4
device strategy
4
strategy speed
4
speed dna
4
walking devices
4

Similar Publications

Here we provide a comprehensive update on the diversity and genetic relatedness of adenoviruses occurring in rodents. Extensive PCR screenings revealed the presence of adenoviral DNA in samples originating from representatives of 17 rodent species from four different suborders of Rodentia. Distinct sequences of 28 different adenoviruses were obtained from the positive samples.

View Article and Find Full Text PDF

Nr4a1 and Nr4a3 redundantly control clonal deletion and contribute to an anergy-like transcriptome in auto-reactive thymocytes to impose tolerance in mice.

Nat Commun

January 2025

Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Department of Medicine, University of California, San Francisco, CA, 94143, USA.

The Nr4a nuclear hormone receptors are transcriptionally upregulated in response to antigen recognition by the T cell receptor (TCR) in the thymus and are implicated in clonal deletion, but the mechanisms by which they operate are not clear. Moreover, their role in central tolerance is obscured by redundancy among the Nr4a family members and by their reported functions in Treg generation and maintenance. Here we take advantage of competitive bone marrow chimeras and the OT-II/RIPmOVA model to show that Nr4a1 and Nr4a3 are essential for the upregulation of Bcl2l11/BIM and thymic clonal deletion by self-antigen.

View Article and Find Full Text PDF

Background: Evidence indicates a negative link between glucosamine and age-related cognitive decline and sarcopenia. However, the causal relationship remains uncertain. This study aims to verify whether glucosamine is causally associated with cognitive function and sarcopenia.

View Article and Find Full Text PDF

Methotrexate (MTX) is a widely used antimetabolite drug, mainly used in the treatment of a variety of cancer. Given the low therapeutic index and significant individual variability of MTX, it was critical to perform therapeutic drug monitoring (TDM) to minimize the side effects. Here, we designed a rapid and sensitive fluorescence/colorimetric assay for the detection of MTX in diluted human serum.

View Article and Find Full Text PDF

An Entropy-Driven Multipedal DNA Walker Microsensor for In Situ Electrochemical Detection of ATP.

Anal Chem

December 2024

State Key Laboratory of Metastable Materials Science and Technology, Nano-Biotechnology Key Lab of Hebei Province, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.

Microelectrode- and nanoelectrode-based electrochemistry has become a powerful tool for the in situ monitoring of various biomolecules in vivo. However, two challenges limit the application of micro- and nanoelectrodes: the difficulty of highly sensitive detection of nonelectroactive molecules and the specific detection of target molecules in complex biological environments. Herein, we propose an electrochemical microsensor based on an entropy-driven multipedal DNA walker for the highly sensitive and selective detection of ATP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!