The present studies entail the formulation development and evaluation of chronomodulated drug delivery system of amoxicillin trihydrate (AMT), which comprises of a bilayer tablet containing a delayed release and a sustained release layer. Direct compression method was employed for the preparation of bilayer matrix tablets containing rational blend of polymers, such as Eudragit-L100 D55 as delayed release polymer and HPMCK4M, HPMCK15 and HPMCK100 are sustained release polymers. In- vitro drug release studies of bilayer tablets observed a good sustained release action with time-dependent burst release after a lag-time of 3 hrs. Evaluation of drug release kinetics from sustained release layer of bilayer tablets followed Higuchi model via quasi-Fickian diffusion mechanism. SEM studies revealed formation of pores on sustained release layer, which confirmed the drug release through diffusion and predominantly by surface erosion mechanism. Evaluation of antimicrobial activity showed a decrease in minimum inhibitory concentration of optimized bilayer tablets vis-à-vis conventional marketed formulation. Accelerated stability studies revealed that the optimized bilayer tablet formulation was found to be stable upto the period of 6 months. Solid state characterization employing FT-IR and DSC studies indicated lack of significant interaction of drug with formulation excipients. Thus, the present studies ratify the suitability of chronomodulated bilayer tablets of AMT for effective management of bacterial infections owing to specific time-dependent drug release, higher gastric protection and enhanced antimicrobial activity.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1567201811310020004DOI Listing

Publication Analysis

Top Keywords

sustained release
20
drug release
16
bilayer tablets
16
antimicrobial activity
12
release
12
release layer
12
development evaluation
8
evaluation chronomodulated
8
chronomodulated drug
8
drug delivery
8

Similar Publications

Alcohol-based fuels have shown high compatibility with spark-ignition (SI) engines, which require improvements in fuel efficiency and emissions reduction to meet modern environmental standards. While extensive research has been conducted on ethanol and other lower-order alcohols, there has been comparatively limited investigation into higher-order alcohols like butanol and pentanol as fuel alternatives. Previous studies on pentanol-gasoline blends in SI engines have demonstrated improved engine performance and reduced emissions.

View Article and Find Full Text PDF

Neurotransmitters are released from synaptic vesicles with remarkable precision in response to presynaptic calcium influx but exhibit significant heterogeneity in exocytosis timing and efficacy based on the recent history of activity. This heterogeneity is critical for information transfer in the brain, yet its molecular basis remains poorly understood. Here, we employ a biochemically-defined fusion assay under physiologically relevant conditions to delineate the minimal protein machinery sufficient to account for various modes of calcium-triggered vesicle fusion dynamics.

View Article and Find Full Text PDF

The potential for mitigating intestinal inflammation through the gut-bone axis in the treatment of osteoporosis is significant. While various gut-derived postbiotics or bacterial metabolites have been created as dietary supplements to prevent or reverse bone loss, their efficacy and safety still need improvement. Herein, a colon-targeted drug delivery system is developed using surface engineering of polyvinyl butyrate nanoparticles by shellac resin to achieve sustained release of postbiotics butyric acid at the colorectal site.

View Article and Find Full Text PDF

Multifaceted Immunomodulatory Nanocomplexes Target Neutrophilic-ROS Inflammation in Acute Lung Injury.

Adv Sci (Weinh)

December 2024

Department of Critical Care Medicine and Emergency, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China.

The sepsis-induced acute lung injury (ALI) still represents one of the leading causes of death in critically ill patients, underscoring the need for novel therapies. Excessive activation of immune cells and damage of reactive oxygen species (ROS) are the main factors that exacerbate lung injury. Here, the multifaceted immunomodulatory nanocomplexes targeting the proinflammatory neutrophilic activation and ROS damage are established.

View Article and Find Full Text PDF

Environmental Conditions Modulate Warming Effects on Plant Litter Decomposition Globally.

Ecol Lett

January 2025

Climate Impacts Research Centre, Department of Ecology and Environmental Sciences, Umeå University, Umeå, Sweden.

Empirical studies worldwide show that warming has variable effects on plant litter decomposition, leaving the overall impact of climate change on decomposition uncertain. We conducted a meta-analysis of 109 experimental warming studies across seven continents, using natural and standardised plant material, to assess the overarching effect of warming on litter decomposition and identify potential moderating factors. We determined that at least 5.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!