Background: As the prevalence of diabetes rises, its complications such as diabetic nephropathy affect an increaseing number of patients. Consequently, the need for biomarkers in rodent models which reflect the stage and course of diabetic nephropathy is high. This article focuses on Heart-type fatty acid binding protein (H-FABP), osteopontin (OPN), nephrin, and Neutrophil gelatinase-associated lipocalin (NGAL) in urine, and kidney injury molecule (KIM)-1, clusterin, and tissue inhibitior of metalloproteinases (TIMP) 1 in plasma in uni-nephrectomized rats with streptocotozin-induced type 1 diabetes mellitus, a common animal model to explore renal impairment in the setting of diabetes mellitus.

Methods: 23 male Wistar rats were uni-nephrectomized and subsequently divided into two study groups. The diabetic group received streptozotocin (STZ) via tail-vein injection, the non-diabetic group received citrate buffer without STZ. Subsequently, blood glucose, body weight, and blood pressure were checked regularly. After 18 weeks, animals were placed in metabolic cages, blood and urine obtained and subsequently organs were harvested after sacrifice.

Results: Blood glucose levels were highly increased in diabetic animals throughout the experiment, whereas systolic blood pressure did not differ between the study groups. At study end, classical biomarkers such as urinary albumin and protein and plasma cystatin c were only slightly but not significantly different between groups indicating a very early disease state. In contrast, urinary excretion of H-FABP, OPN, nephrin, and NGAL were highly increased in diabetic animals with a highly significant p-value (p < 0.01 each) compared to non-diabetic animals. In plasma, differences were found for calbindin, KIM-1, clusterin, TIMP-1, and OPN. These findings were confirmed by means of the area under the receiver operating characteristic curve (ROC-AUC) analysis.

Conclusions: In summary, our study revealed elevated levels of new plasma and urinary biomarkers (urinary osteopontin, urinary nephrin, urinary NGAL, urinary H-FABP, plasma KIM-1, plasma TIMP-1) in uni-nephrectomized diabetic rats, an established rat model of diabetic nephropathy. These biomarkers appeared even before the classical biomarkers of diabetic nephropathy such as albuminuria and urinary protein excretion. The new biomarkers might offer an advantage to urinary albumin and plasma cystatin c with respect to early detection.

Download full-text PDF

Source

Publication Analysis

Top Keywords

diabetic nephropathy
20
diabetic
9
urinary
9
plasma
8
opn nephrin
8
kim-1 clusterin
8
study groups
8
group received
8
blood glucose
8
blood pressure
8

Similar Publications

To investigate the role of silent information regulator 6 (SIRT6) in regulating podocyte injury in diabetic nephropathy (DN) through autophagy mediated by Notch signaling pathway. A blank control group (group A), a diabetic nephropathy group (group B), and a Sirt6 intervention group (group C) were established. The group A cells were human normal glomerular podocyte cell lines (HGPCs) without any treatment.

View Article and Find Full Text PDF

Human amniotic epithelial stem cells, a potential therapeutic approach for diabetes and its related complications.

Hum Cell

January 2025

Department of Metabolism and Endocrinology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.

The escalating diabetes prevalence has heightened interest in innovative therapeutic strategies for this disease and its complications. Human amniotic epithelial stem cells (HAESCs), originate from the innermost layer of the placenta closest to the fetus and express stem cell markers in the amniotic membrane's umbilical cord attachment area, which have garnered significant attention. This article critically examines emerging research advancements and potential application values of hAESCs in treating diabetes and its complications.

View Article and Find Full Text PDF

Diabetic kidney disease is a leading cause of kidney failure worldwide and is easily detectable with screening examination. Diabetes causes hyperfiltration and activation of the renin-angiotensin aldosterone system by hemodynamic changes within the nephron, which perpetuates damaging physiology. Diagnosis is often clinical after detection of heavy proteinuria in a patient with diabetes,but can be confirmed by observation of histologic stages on kidney biopsy.

View Article and Find Full Text PDF

Xanthohumol attenuates TXNIP-mediated renal tubular injury in vitro and in vivo diabetic models.

J Nat Med

January 2025

Department of Endocrinology, Cangzhou Central Hospital, No. 16 West Xinhua Road, Cangzhou, 061000, Hebei, China.

Thioredoxin-interacting protein (TXNIP), as a pivotal protein in the cellular stress response, plays a significant role in the progression of diabetic nephropathy (DN). Consequently, therapeutic strategies aimed at targeting TXNIP may offer novel interventions for patients with DN. Our study is to explore the therapeutic potential of targeting TXNIP in mitigating renal tubular injury induced by hyperglycemia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!