Tsitologiia
Published: November 2012
The response of human endometrial stem cells (hESCs) to oxidative stress has been investigated by flow cytometry. Two terminally differentiated cell lines were used for the comparison: human embryonic lung fibroblasts and human dermal fibroblasts. The oxidative stress was designed by hydrogen peroxide (H2O2) action in the wide range of concentrations (50-1500 microM) during 24 h. It has been shown that the H2O2 amount per one cell (pM/cell), but not H2O2 concentration in the growth medium, should be taken into account for the accurate evaluation of H2O2 effect on different cell lines. Therefore, in our experiments LD50 reflects the amount of H2O2 per cell, at which 50% cells survived after 24 h. We have demonstrated that hESCs are more resistant to H2O2 than embryonic lung fibroblasts, but less resistant than dermal fibroblasts.
Download full-text PDF |
Source |
---|
Cureus
January 2025
Obstetrics and Gynecology, Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, CHN.
Objective: The present study was designed to comprehensively analyze the expression profiles of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), estrogen-related receptor-α (ERRα), estrogen receptor-β (ERβ), interleukin-6 (IL-6), cysteinyl-aspartic acid-specific protease-3 (caspase-3), and cysteinyl-aspartic acid-specific protease-9 (caspase-9) in endometriosis tissues. It also aimed to elucidate the hitherto unclarified role of PGC-1α in the processes of proliferation, apoptosis, and gene expression regulation of human endometrial stromal cells, thereby providing novel insights and identifying potential molecular targets for advancing endometriosis treatment modalities.
Methods: A total of 49 ectopic endometrial tissue samples and 50 normal endometrial tissue samples were meticulously collected from patients who underwent gynecological surgeries in the People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine in Fuzhou, China, between January 2022 and January 2023.
PLoS One
January 2025
Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China.
Endometriosis is a chronic inflammatory disorder characterized by presence of endometrial tissue outside the uterine cavity. Immunohistochemical analysis (IHC) revealed markedly elevated expression of IL6ST in endometrial tissue of patients with ovarian endometriosis. Level of methylation of IL6ST is diminished in patients with endometriosis, whereas level of mRNA expression is markedly elevated by RT-PCR.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Obstetrics and Gynecology, Shiga University of Medical Science, 520-2192/Seta Tsukinowa-cho, Otsu, Shiga, Japan.
Tamoxifen, a common adjuvant therapy for hormone receptor-positive breast cancer, is associated with an increased risk of endometrial pathologies, such as hyperplasia, polyps, and carcinoma. This study investigates rapamycin, an mTOR inhibitor, as a potential novel strategy for preventing tamoxifen-induced endometrial proliferation. This in vitro study utilised endometrial stromal cells isolated from infertile women.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China.
Gynecologic cancers (GCs), including cervical cancer (CC), ovarian cancer (OC), endometrial cancer (EC), as well as vulvar and vaginal cancers, represent major health threats to women, with increasing incidence rates observed globally. Conventional treatments, such as surgery, radiation therapy, and chemotherapy, are often hindered by challenges such as drug resistance and recurrence, contributing to high mortality rates. Organoid technology has emerged as a transformative tool in cancer research, offering in vitro models that closely replicate the tumor cell architecture and heterogeneity of primary cancers.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Korea Institute of Toxicology, Daejeon 34114, Republic of Korea. Electronic address:
N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD), a synthetic additive widely used in the rubber industry, and its oxidized product 6PPD-quinone (6PPDQ), have garnered widespread attention as an emerging hazardous chemicals owing to their potential detrimental effects on aquatic ecosystem and human health. The effects of 6PPD and 6PPDq on the female reproductive tract, especially embryo implantation, remain unknown and were investigated in this study. We used the spheroid attachment and outgrowth models of BeWo trophoblastic spheroids and Ishikawa cells as surrogates for the human blastocyst and endometrial epithelium, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.