PAHs were measured in water, sediment, and shrimps of Estero de Urias, an estuary in Sinaloa, Mexico, during the rainy and dry seasons, and analyzed for eleven PAHs routinely detected in samples. Phenanthrene was the most dominant congener in the water, sediment, and shrimp samples comprising about 38, 24, and 25%, respectively, of the eleven PAHs detected, followed by pyrene and naphthalene in water and sediment samples, and pyrene and fluorine in the shrimp samples. Total PAH concentrations ranged from 9 to 347 ng/L in water, 27 to 418 ng/g in sediments, and 36 to 498 ng/g in shrimps. The sources of contamination are closely related to human activities such as domestic and industrial discharge, automobile exhausts, and street runoff. High concentrations were also measured during the rainy season and during the first quarter of the year. Toxicity tests were also carried out, exposing fish embryos and juvenile shrimps to some of these PAHs. Fish embryos exposed to PAHs showed exogastrulation, while juvenile shrimps showed significantly lower growth rates than controls. DNA and protein alterations were also observed. These toxicity tests indicate that PAH concentrations measured could be dangerous to some aquatic organisms, particularly during early stages of development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3446648 | PMC |
http://dx.doi.org/10.1100/2012/687034 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Centre of Research for Development, University of Kashmir, Srinagar, 190006, India.
The fate and degradation of organic matter in aquatic systems is a vital link in nutrient cycling and sedimentation processes influenced by exogenous and endogenous factors, such as inputs from upstream sources, sediment suspension, and the decomposition of aquatic organisms. The interplay of organic carbon, microbes, and environmental factors shapes the distribution and degradation of organic matter. Characterizing the source distribution of sedimentary organic matter in aquatic systems using novel proxies can unravel new insights into the mechanisms that control its dispersal, preservation and fate, which is essential to understanding the global carbon and nitrogen cycles.
View Article and Find Full Text PDFChem Eng J
July 2024
Program in Environmental and Polymer Engineering, Graduate School of INHA University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea.
Microplastics (MPs) have been detected in various environmental matrices, drinking water, and food, and their presence is an ecological and human health concern. Most research on MPs has focused solely on their detection and analysis. However, sample pretreatment methods are critical for accurate MP analysis and must be properly established.
View Article and Find Full Text PDFEnviron Microbiol Rep
February 2025
Department of Biology, University of Regina, Regina, Saskatchewan, Canada.
Prairie wetland ponds on the Great Plains of North America offer a diverse array of geochemical scenarios that can be informative about their impact on microbial communities. These ecosystems offer invaluable ecological services while experiencing significant stressors, primarily through drainage and climate change. In this first study systematically combining environmental conditions with microbial community composition to identify various niches in prairie wetland ponds, sediments had higher microbial abundance but lower phylogenetic diversity in ponds with lower concentrations of dissolved organic carbon ([DOC]; 10-18 mg/L) and sulfate ([SO ]; 37-58 mg/L) in water.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Environmental Sciences & Engineering, Faculty of Agriculture & Natural Resources, Ardakan University, Ardakan, Iran.
Assessing the impact of climate change on water-related ecosystem services (ES) in Protected Areas (PAs) is essential for developing soil and water conservation strategies that promote sustainability and restore ES. However, the application of ES research in Protected Area (PA) management remains ambiguous and has notable shortcomings. This study primarily aimed to assess the SDR-InVEST (Sediment Delivery Ratio-Integrated Valuation of Ecosystem Services and Tradeoffs) model for estimating ES, including soil loss, sediment export, and sediment retention, under various climate change scenarios from 1997 to 2100 in the data-scarce region of the Bagh-e-Shadi Forest PA.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec H4B 1R6, Canada.
Coal tar-related products as a source of polycyclic aromatic compounds (PACs) are particularly concerning due to high PAC concentrations and inadequate source management. Benzo[b]carbazole, a benzocarbazole isomer exclusively found in coal tar-derived products, acts as an ideal marker to distinguish coal tar sources from others, enabling more robust quantification of coal tar contributions to PACs. To evaluate the historical and recent contributions of coal tar-related sources to the levels of PACs in Lake Ontario and associated ecological risk, we analyzed 31 PACs and 3 BCBz isomers in surface sediments and a sediment core.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!