Manganese in occupational arc welding fumes--aspects on physiochemical properties, with focus on solubility.

Ann Occup Hyg

Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, Box 414, SE-405 30 Göteborg, Sweden.

Published: January 2013

Physicochemical properties, such as particle sizes, composition, and solubility of welding fumes are decisive for the bioaccessibility of manganese and thereby for the manganese cytotoxic and neurotoxic effects arising from various welding fumes. Because of the diverse results within the research on welding fume solubility, this article aims to review and discuss recent literature on physicochemical properties of gas metal arc welding, shielded metal arc welding, and flux-cored arc welding fumes, with focus on solubility properties. This article also presents a short introduction to the literature on arc welding techniques, health effects from manganese, and occupational exposure to manganese among welders.

Download full-text PDF

Source
http://dx.doi.org/10.1093/annhyg/mes053DOI Listing

Publication Analysis

Top Keywords

arc welding
20
welding fumes
12
manganese occupational
8
welding
8
focus solubility
8
physicochemical properties
8
metal arc
8
manganese
5
arc
5
occupational arc
4

Similar Publications

Fracture toughness is an important index related to the service safety of marine risers, and weld is an essential component of the steel catenary risers. In this paper, microscopic structure characterization methods such as scanning electron microscopy (SEM) and electron back scatter diffraction (EBSD), as well as mechanical experiments like crack tip opening displacement (CTOD) and nanoindentation, were employed to conduct a detailed study on the influence of the microstructure characteristics of multi-wire submerged arc welded seams of steel catenary riser pipes on CTOD fracture toughness. The influence mechanisms of each microstructure characteristic on fracture toughness were clarified.

View Article and Find Full Text PDF

In this study, the melt pool formation behavior of high-speed laser-arc hybrid welding of aluminum plates was simulated using finite element analysis (FEA). To evaluate the heat input efficiencies of the laser and arc, standalone laser or arc welding experiments were conducted using the same arc or laser processing parameters as those employed in hybrid welding. These experiments were also simulated using FEA to calibrate the laser and arc heat adsorption parameters.

View Article and Find Full Text PDF

Wire-arc additive manufacturing (WAAM) has fully empowered the design and manufacturing of metals with its unparalleled efficiency and flexibility. However, the process has relatively poor shape control capabilities, often requiring machining post-processing. This study explores a tungsten inert gas arc remelting (TIGAR) process to improve the surface flatness of WAAM components at a low cost and significantly reduce machining waste (up to 76%), which is crucial for the sustainable development of the process.

View Article and Find Full Text PDF

Forging additive hybrid manufacturing integrated the high efficiency of forging and the great flexibility of additive manufacturing, which has significant potential in the construction of reactor pressure vessels (RPVs). In the components, the heat-affected zone (HAZ, also called as bonding zone) between the forged substrate zone and the arc deposition zone was key to the final performance of the components. In this study, the Mn-Mo-Ni welding wire was deposited on the 16MnD5 substrate with a submerged arc heat source.

View Article and Find Full Text PDF

In this study, the relationships between the values of the parameters included in heat input (welding current, arc voltage and welding speed) and their effects on the size of the cross-sectional areas of welds in joints made of ferritic-austenitic stainless steel using the GMAW method were determined. An attempt was also made to determine to what extent it will be possible to predict the properties of fabricated welded joints using the functional relationship describing the effect of the value of heat input on the size of the cross-sectional area of welds. The analysis of the developed mathematical models shows their suitability for explaining (and predicting) the sizes of the cross-sectional areas of welded joints depending on the values of the input parameters of the welding process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!