Although the role of TGF-β in tumor progression has been studied extensively, its impact on drug delivery in tumors remains far from understood. In this study, we examined the effect of TGF-β blockade on the delivery and efficacy of conventional therapeutics and nanotherapeutics in orthotopic mammary carcinoma mouse models. We used both genetic (overexpression of sTβRII, a soluble TGF-β type II receptor) and pharmacologic (1D11, a TGF-β neutralizing antibody) approaches to block TGF-β signaling. In two orthotopic mammary carcinoma models (human MDA-MB-231 and murine 4T1 cell lines), TGF-β blockade significantly decreased tumor growth and metastasis. TGF-β blockade also increased the recruitment and incorporation of perivascular cells into tumor blood vessels and increased the fraction of perfused vessels. Moreover, TGF-β blockade normalized the tumor interstitial matrix by decreasing collagen I content. As a result of this vessel and interstitial matrix normalization, TGF-β blockade improved the intratumoral penetration of both a low-molecular-weight conventional chemotherapeutic drug and a nanotherapeutic agent, leading to better control of tumor growth.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3478596 | PMC |
http://dx.doi.org/10.1073/pnas.1117610109 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!