Chronic anemia and tissue hypoxia increase intestinal iron absorption and mitochondrial impairment in thalassemic patients. Regular blood transfusions improve hemoglobin levels but determine an iron overload that induces reactive oxygen species (ROS) overproduction. The aim of this study was to assess cellular oxidative damage by detection of ROS, lipid peroxidation, 8-oxo-dG, and mitochondrial transmembrane potential (Δψ(m)) in transfused and untransfused thalassemic patients. We have also evaluated genotoxicity by CBMN and comet assay. Our data show that ROS and lipid hydroperoxides are significantly higher in thalassemic patients than in controls, especially in untransfused thalassemia intermedia patients. Moreover, the latter have a significant decrease in Δψ(m) that highlights the energetic failure in hypoxic state and the ROS overproduction in the respiratory chain. 8-OHdG levels are higher in thalassemics than in controls, but do not differ significantly between the two patient groups. Both genotoxicity biomarkers highlight the mutagenic potential of hydroxyl radicals released by iron in the Fenton reaction. Values for percentage of DNA in the comet tail and micronuclei frequency, significantly higher in transfused patients, could also be due to active hepatitis C virus infection and to the many drug treatments. Our biomonitoring study confirms the oxidative damage in patients with thalassemia major and shows an unexpected cellular oxidative damage in untransfused thalassemic patients. In addition to iron overload, the results highlight the important role played by hypoxia-driven mitochondrial ROS overproduction in determining oxidative damage in β-thalassemias.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.freeradbiomed.2012.08.592DOI Listing

Publication Analysis

Top Keywords

oxidative damage
20
thalassemic patients
16
untransfused thalassemic
12
ros overproduction
12
genotoxicity biomarkers
8
transfused untransfused
8
iron overload
8
cellular oxidative
8
ros lipid
8
patients
7

Similar Publications

Background: Evidence has revealed that oestrogen deprivation-induced osteolysis is microbiota-dependent and can be treated by probiotics. However, the underlying mechanism require further investigation. This study aims to provide additional evidence supporting the use of probiotics as an adjuvant treatment and to explore the pathophysiology of oestrogen-deprived osteolysis.

View Article and Find Full Text PDF

Avian pathogenic Escherichia coli (APEC) is a significant pathogen infecting poultry that is responsible for high mortality, morbidity and severe economic losses to the poultry industry globally, posing a substantial risk to the health of poultry. APEC encounters reactive oxygen species (ROS) during the infection process and thus has evolved antioxidant defense mechanisms to protect against oxidative damage. The imbalance of ROS production and antioxidant defenses is known as oxidative stress, which results in oxidative damage to proteins, lipids and DNA, and even bacterial cell death.

View Article and Find Full Text PDF

HIF-1α mediates hypertension and vascular remodeling in sleep apnea via hippo-YAP pathway activation.

Mol Med

December 2024

Department of Otorhinolaryngology/Head and Neck, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No.3 East Qingchun Road, Hangzhou, 310020, Zhejiang, China.

Background: Sleep apnea syndrome (SAS) is associated with hypertension and vascular remodeling. Hypoxia-inducible factor-1α (HIF-1α) and the Hippo-YAP pathway are implicated in these processes, but their specific roles remain unclear. This study investigated the HIF-1α/Hippo-YAP pathway in SAS-related hypertension.

View Article and Find Full Text PDF

ALDH2 Plays a Role in Spermatogenesis and Male Fertility by Regulating Oxidative Stress in Mice.

Exp Cell Res

December 2024

School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Qingdao, 266237, China; Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250100, China. Electronic address:

Spermatogenesis and sperm maturation are complex biological processes that involve intricate cellular and molecular interactions. The Aldh2 gene is involved in the metabolism of specific aldehydes generated by oxidative stress. Aldh2 is abundantly expressed in the testis and epididymis; however, the specific role of Aldh2 in regulating spermatogenesis and sperm maturation remains unclear.

View Article and Find Full Text PDF

Pharmacological blockade of infection chronification modulates oxy-inflammation and prevents the activation of stress-induced premature senescence markers in schistosomiasis.

Microb Pathog

December 2024

Departamento de Biologia Animal (DBA), Programa de Pós-Graduação em Biologia Animal (PPGBA), Universidade Federal de Viçosa (UFV), Viçosa, 36570-900, Minas Gerais, Brazil.

Chronic inflammation, oxidative stress, and DNA damage are observed in schistosomiasis and premature aging. However, the potential of these events to trigger stress-induced premature senescence (SIPS) throughout schistosomiasis progression remains overlooked, especially in response to the first-line pharmacological treatment. Thus, we investigated the relationship between oxidative stress and SIPS sentinel markers in untreated Schistosoma mansoni-infected mice and those receiving praziquantel (Pz)-based reference treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!