Filipendula kamtschatica is a plant utilized as a traditional medicine by Ainu people in Japan, but its chemical constituents are not much studied. Pancreatic lipase inhibitors are a promising tool for the treatment of obesity. We searched for natural lipase inhibitors from F. kamtschatica and two new compounds were isolated along with the known flavonoid glycoside. The structure elucidation of new compounds revealed these two to be 2-O-caffeoyl-4-O-galloyl-L-threonic acid and 3-O-caffeoyl-4-O-galloyl-L-threonic acid, which can be recognized as a pancreatic lipase's substrate-like structure. The isolated compounds all showed an inhibitory activity against porcine pancreatic lipase and one of the isomer, 3-O-caffeoyl-4-O-galloyl-L-threonic acid, possessed the most potent activity with IC(50) value showing an order lower value compared to others. The substrate-like structure of the new compounds seemed to be important for their activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmcl.2012.08.055 | DOI Listing |
Curr Med Chem
January 2025
Cukurova University, Faculty of Medicine, Division of Endocrinology, Adana, Turkey.
Introduction: Diabetes mellitus is associated with an increased risk of atherosclerosis related to dyslipidemia. Although the terms hyperlipidemia and Diabetes Mellitus [DM] or diabetic dyslipidemia are interrelated to each other, these two conditions have some differences.
Aim: This study aimed to highlight possible mechanisms of hyperlipidemia and/or dyslipidemia in diabetic patients, which can be treated with available and newer hypolipidemic drugs.
iScience
January 2025
The Wallenberg Laboratory, Institute of Medicine University of Gothenburg Sweden, Gothenburg, Sweden.
Mice with genetic ablation of PI3Kγ are protected from diet-induced obesity. However, the cell type responsible for PI3Kγ action in obesity remains unknown. We generated mice with conditional deletion of PI3Kγ in neurons using the nestin promoter to drive the expression of the Cre recombinase (PI3Kγ mice) and investigated their metabolic phenotype in a model of diet-induced obesity.
View Article and Find Full Text PDFEur J Med Chem
January 2025
Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, GA, 30322, United States. Electronic address:
Monoacylglycerol lipase (MAGL) is a 33 kDa cytosolic serine hydrolase that is widely distributed in the central nervous system and peripheral tissues. MAGL hydrolyzes monoacylglycerols into fatty acids and glycerol, playing a crucial role in endocannabinoid degradation. Inhibition of MAGL in the brain elevates levels of 2-arachidonoylglycerol and leads to decreased pro-inflammatory prostaglandin and thromboxane production.
View Article and Find Full Text PDFAppl Biochem Biotechnol
January 2025
Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan, 31460, Republic of Korea.
Antarctic organisms are known for producing unique secondary metabolites, and this study specifically focuses on the less-explored metabolites of the moss Warnstorfia fontinaliopsis. To evaluate their potential bioactivity, we extracted secondary metabolites using four different solvents and identified significant lipase inhibitory activity in the methanol extract. Non-targeted metabolomic analysis using liquid chromatography-tandem mass spectrometry (LC-MS/MS) on this extract predicted the presence of 12 compounds, including several not previously reported in mosses.
View Article and Find Full Text PDFJ Biol Chem
January 2025
Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra, India. Electronic address:
Lysophosphatidylserine (lyso-PS) is a potent hormone-like signaling lysophospholipid, which regulates many facets of mammalian biology and dysregulation in its metabolism is associated with several human neurological and autoimmune diseases. Despite the physiological importance and causal relation with human pathophysiology, little is known about the metabolism of lyso-PS in tissues other than the nervous and immune systems. To address this problem, here, we attempted to identify one (or more) lipase(s) capable of degrading lyso-PS in different mammalian tissues.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!