Osseointegration is the process by which an orthopedic implant makes direct bone-to-implant contact and is crucial for the long-term function of the implant. Surface contaminants, such as bacterial debris and manufacturing residues, may remain on orthopedic implants after sterilization and impair osseointegration. For example, specific lots of implants that were associated with impaired osseointegration and high failure rates were discovered to have contaminants including bacterial debris. Therefore, the goals of this study were to determine if bacterial debris exists on sterile orthopedic implants and if adherent bacterial debris inhibits the osseointegration of orthopedic implants. We found that debris containing lipopolysaccharide (LPS) from Gram-negative bacteria exists on both sterile craniofacial implants and wrist implants. Levels of bacterial debris vary not only between different lots of implants but within an individual lot. Using our murine model of osseointegration, we found that ultrapure LPS adherent to the implants inhibited bone-to-implant contact and biomechanical pullout measures. Analysis of osseointegration in knock-out mice demonstrated that adherent LPS inhibited osseointegration by signaling through its primary receptor, Toll-like receptor 4, and not by signaling through Toll-like receptor 2. Ultrapure LPS adherent to titanium alloy discs had no detectable effect on early stages of MC3T3-E1 osteogenesis in vitro such as attachment, spreading or growth. However, later stages of osteogenic differentiation and mineralization were inhibited by adherent LPS. Thus, LPS may inhibit osseointegration in part through cell autonomous effects on osteoblasts. These results highlight bacterial debris as a type of surface contaminant that can impair the osseointegration of orthopedic implants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3513552PMC
http://dx.doi.org/10.1016/j.bone.2012.09.011DOI Listing

Publication Analysis

Top Keywords

bacterial debris
24
orthopedic implants
20
osseointegration orthopedic
12
osseointegration
10
implants
10
inhibits osseointegration
8
bone-to-implant contact
8
impair osseointegration
8
lots implants
8
exists sterile
8

Similar Publications

The community dynamic alterations mechanisms of traveling plastics in the Pearl River estuary with the salinity influence.

Water Res

December 2024

College of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China. Electronic address:

Most ocean plastics originate from terrestrial emissions, and the plastisphere on the plastics would alter during the traveling due to the significant differences in biological communities between freshwater and marine ecosystems. Microorganisms are influenced by the increasing salinity during traveling. To understand the contribution of plastic on the alteration in biological communities of plastisphere during traveling, this study investigated the alterations in microbial communities on plastics during the migration from freshwater to brackish water and saltwater.

View Article and Find Full Text PDF

Polyethylene (PE) is the most-produced polyolefin, and consequently, it is the most widely found plastic waste worldwide. PE biodegradation is under study by applying different (micro)organisms in order to understand the biodegradative mechanism in the majority of microbes. This study aims to identify novel bacterial species with compelling metabolic potential and strategic genetic repertoires for PE biodegradation.

View Article and Find Full Text PDF

Nucleases: From Primitive Immune Defenders to Modern Biotechnology Tools.

Immunology

December 2024

Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden.

The story of nucleases begins on the ancient battlefields of early Earth, where simple bacteria fought to survive against viral invaders. Nucleases are enzymes that degrade nucleic acids, with restriction endonucleases emerging as some of the earliest defenders, cutting foreign DNA to protect their bacteria hosts. However, bacteria sought more than just defence.

View Article and Find Full Text PDF

Fabrication of microplastic-free biomass-based masks: Enhanced multi-functionality with all-natural fibers.

J Hazard Mater

December 2024

College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science &Technology, Xi'an 710021, China. Electronic address:

With the coronavirus-2019 epidemic, disposable surgical masks have become a common personal protective necessity. However, off-the-shelf masks have low filtration efficiency and short service life and can only physically isolate pathogens, easily leading to secondary infection and cross-infection between users. Additionally, they produce debris and microplastics, which can be inhaled by the human body and cause serious diseases.

View Article and Find Full Text PDF

A Pan-European study of the bacterial plastisphere diversity along river-to-sea continuums.

Environ Sci Pollut Res Int

December 2024

Laboratoire d'Océanographie Microbienne LOMIC, UMR 7621, Sorbonne Université, CNRS, Observatoire Océanologique de Banyuls, Banyuls-Sur-Mer, France.

Microplastics provide a persistent substrate that can facilitate microbial transport across ecosystems. Since most marine plastic debris originates from land and reaches the ocean through rivers, the potential dispersal of freshwater bacteria into the sea represents a significant concern. To address this question, we explored the plastisphere on microplastic debris (MPs) and on pristine microplastics (pMPs) as well as the bacteria living in surrounding waters, along the river-sea continuum in nine major European rivers sampled during the 7 months of the Tara Microplastics mission.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!