The hydrolysis kinetics of monobasic and dibasic aminoalkyl esters of ketorolac.

Drug Dev Ind Pharm

Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan.

Published: September 2013

Six aminoethyl and aminobutyl esters of ketorolac containing 1-methylpiperazine (MPE and MPB), N-acetylpiperazine (APE and APB) or morpholine (ME and MB), were synthesized and their hydrolysis kinetics were studied. The hydrolysis was studied at pH 1 to 9 (for MPE, APE and ME) and pH 1 to 8 (for MPB, APB and MB) in aqueous phosphate buffer (0.16 M) with ionic strength (0.5 M) at 37°C. Calculation of k(obs), construction of the pH-rate profiles and determination of the rate equations were performed using KaleidaGraph® 4.1. The hydrolysis displays pseudo-first order kinetics and the pH-rate profiles shows that the aminobutyl esters, MPE, APB and MB, are the most stable. The hydrolysis of the ethyl esters MPE, APE and ME, depending on the pH, is either fast and catalyzed by the hydroxide anion or slow and uncatalyzed for the diprotonated, monoprotonated and nonprotonated forms. The hydrolysis of the butyl esters showed a similar profile, albeit it was also catalyzed by hydronium cation. In addition, the hydroxide anion is 105 more effective in catalyzing the hydrolysis than the hydronium cation. The hydrolysis pattern of the aminoethyl esters is affected by the number and pKa of its basic nitrogen atoms. The monobasic APE and ME, show a similar hydrolysis pattern that is different than the dibasic MPE. The length of the side chain and the pKa of the basic nitrogen atoms in the aminoethyl moiety affect the mechanism of hydrolysis as the extent of protonation at a given pH is directly related to the pKa.

Download full-text PDF

Source
http://dx.doi.org/10.3109/03639045.2012.712535DOI Listing

Publication Analysis

Top Keywords

hydrolysis
10
hydrolysis kinetics
8
esters ketorolac
8
aminobutyl esters
8
mpe ape
8
ph-rate profiles
8
esters mpe
8
hydroxide anion
8
hydronium cation
8
hydrolysis pattern
8

Similar Publications

Protein hydrolysis targeted chimeras (PROTACs) represent a different therapeutic approach, particularly relevant for overcoming challenges associated with traditional small molecule inhibitors. These challenges include targeting difficult proteins that are often deemed "undruggable" and addressing issues of acquired resistance. PROTACs employ the body's own E3 ubiquitin ligases to induce the degradation of specific proteins of interest (POIs) through the ubiquitin-proteasome pathway.

View Article and Find Full Text PDF

Farnesyl pyrophosphate derivatives bearing an additional oxygen atom at position 5 proved to be very suitable for expanding the substrate promiscuity of sesquiterpene synthases (STSs) and the formation of new oxygenated terpenoids. Insertion of an oxygen atom in position 9, however, caused larger restraints that led to restricted acceptance by STSs. In order to reduce some of the proposed restrictions, two FPP-ether derivatives with altered substitution pattern around the terminal olefinic double bond were designed.

View Article and Find Full Text PDF

Highly Efficient Analysis on Biomass Carbohydrate Mixtures by DREAMTIME NMR Spectroscopy.

Anal Chem

December 2024

Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Siming South Road 422, Xiamen 361005, China.

Proton (H) NMR spectroscopy presents a powerful tool for biomass mixture studies by revealing the involved chemical compounds with identified ingredients and molecular structures. However, conventional H NMR generally suffers from spectral congestion when measuring biomass mixtures, particularly biomass carbohydrate samples, that contain various physically and chemically similar compounds. In this study, a targeted detection NMR approach, DREAMTIME, is exploited for studying biomass carbohydrate mixtures by spectroscopically targeting the desired compounds in separate 1D NMR spectra.

View Article and Find Full Text PDF

Polymer-based catalysts have garnered significant interest for their efficiency, reusability, and compatibility with various synthesis processes. In catalytic applications, polymers offer the advantage of structural versatility, enabling functional groups to be tailored for specific catalytic activities. In this study, we developed a novel magnetic copolymer of methyl methacrylate and maleic anhydride (PMMAn), synthesized via in situ chemical polymerization of methyl methacrylate onto maleic anhydride, using benzoyl peroxide as a free-radical initiator.

View Article and Find Full Text PDF

Genes in microorganisms influence the biological processes in anaerobic digestion (AD). However, key genes involved in the four metabolic steps (hydrolysis, acidogenesis, acetogenesis, and methanogenesis) remain largely unexplored. This study investigated the abundance and distribution of key functional genes in full-scale anaerobic digesters processing food waste (FWDs) and municipal wastewater (MWDs) through 16S rRNA gene and shotgun metagenomic analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!