In an experimental study (October 2010 Mannheim Germany) with 99 Caucasian volunteers, the skin colour (L*, a*, b*) and the reflectance spectra of human skin were compared to the Fitzpatrick's sun-reactive skin photo types (SPT). For this purpose, the skin colour and the reflectance spectra of human skin were determined using non-invasive method with a newly developed fibre optic detection device. The device, based on reflectance spectroscopy, was designed and optimized using a commercial optical analysis Software. By means of the measured spectra of scattered light, the colour values and the absorption spectra of the skin were calculated. Neither any of the L*, a*, b* colour values nor any of the parameters of the absorbance spectra can be used alone to assess the skin type properly. Therefore, an ordinal logistic regression analysis was performed, using the statistical computing software r, to correlate the skin types with the measured optical parameters. It turned out that the detection device combined with the extended statistical analysis gives a better estimate of skin type in respect of the measured optical parameters than a procedure with only L*, a*, b* colour values. Even with the extended methodology, the procedure gives only a rough estimation of the skin type.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/ics.12003 | DOI Listing |
J Neurol
January 2025
Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA.
Background: Previous investigations on optical coherence tomography (OCT) in multiple sclerosis (MS) focused on generalizable macular and peri-papillary regions without considering the anatomic variations of the retinal layer thickness.
Objective: This study aimed to assess the utility of parafoveal retinal layer thickness measured by OCT, underscoring its relationships with clinical outcomes in MS.
Methods: In this cross-sectional study, 214 people with MS (pwMS) and 57 age- and sex-matched healthy controls (HCs) were enrolled.
Radiat Environ Biophys
January 2025
Radiation Physics, Faculty of Science, Al -Azhar University, Cairo, Egypt.
This study aimed to evaluate the dosimetric and clinical outcomes of flattening filter (FF) versus flattening filter-free (FFF) beams in head and neck cancer (HNC) patients treated with volumetric modulated arc therapy (VMAT). Twenty-four patients with 70/59.4/54 Gy dose prescribed in 33 fractions with simultaneous integrated boost treatment were retrospectively analyzed to compare treatment delivery efficiency, target coverage, sparing of organs at risk (OARs), and remaining volume at risk (RVR) in two HNC groups (nasopharyngeal and oropharyngeal).
View Article and Find Full Text PDFOphthalmol Ther
January 2025
Pediatric Ophthalmology and Strabismus Division, King Khaled Eye Specialist Hospital, Al Urubah Branche Rd., West Building 2nd Floor, 11462, Riyadh, Saudi Arabia.
Introduction: Persistent fetal vasculature (PFV) is a congenital anomaly associated with significant surgical challenges, including a high risk of postoperative retinal detachment (RD). This study aimed to evaluate the impact of surgical approach and axial length (AL) on RD risk and visual outcomes in pediatric PFV management.
Methods: A retrospective cohort study was conducted involving 76 eyes of 74 patients who underwent cataract surgery for PFV between 2014 and 2022.
J Neurol
January 2025
Department of Medical and Surgical Sciences, University of Foggia, 71122, Foggia, Italy.
Background: Multiple sclerosis (MS) involves a complex interplay between immune-mediated inflammation and neurodegeneration. Recent advances in biomarker research have provided new insights into the molecular underpinnings of MS, including ferritin, neurogranin, Triggering Receptor Expressed on Myeloid cells 2 (TREM2), and neurofilaments light chain.
Objectives: This pilot study aims to investigate the levels of these biomarkers in the cerebrospinal fluid (CSF) of MS patients and explore their associations with clinical, cognitive, and optical coherence tomography (OCT) parameters.
Nanoscale
January 2025
AIT Austrian Institute of Technology, Molecular Diagnostics, 1210 Vienna, Austria.
Metal nanoparticles are established tools for biomedical applications due to their unique optical properties, primarily attributed to localized surface plasmon resonances. They show distinct optical characteristics, such as high extinction cross-sections and resonances at specific wavelengths, which are tunable across the wavelength spectrum by modifying the nanoparticle geometry. These attributes make metal nanoparticles highly valuable for sensing and imaging in biology and medicine.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!