Localization of messenger RNA (mRNAs) contributes to generation and maintenance of cellular asymmetry, embryonic development and neuronal function. The She1-3 protein machinery in Saccharomyces cerevisiae localizes >30 mRNAs to the bud tip, including 13 mRNAs encoding membrane or secreted proteins. Ribonucleoprotein (RNP) particles can co-localize with tubular endoplasmic reticulum (ER) structures that form the initial elements for segregation of cortical ER (cER), suggesting a coordination of mRNA localization and cER distribution. By investigating localization of MS2-tagged mRNAs in yeast defective at various stages of cER segregation, we demonstrate that proper cER segregation is required for localization of only a subset of mRNAs. These mRNAs include WSC2, IST2, EAR1 and SRL1 that encode membrane or ER associated proteins and are expressed during S and G2 phases of the cell cycle when tubular ER movement into the bud occurs. Translation of WSC2 is not required for localization, ruling out co-translational targeting of this mRNA. Localization of ASH1 mRNA is independent of cER segregation, which is consistent with the expression pattern of ASH1 at late mitosis. Our findings indicate the presence of two different pathways to localize mRNAs to the yeast bud.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/tra.12011 | DOI Listing |
Colloids Surf B Biointerfaces
November 2024
Instituto Biofisika (CSIC, UPV/EHU) and Department of Biochemistry, University of the Basque Country, Leioa, 48940, Spain. Electronic address:
The discovery of a novel sphingolipid subclass, the (1-deoxy)sphingolipids, which lack the 1-hydroxy group, attracted considerable attention in the last decade, mainly due to their involvement in disease. They differed in their physico-chemical properties from the canonical (or 1-hydroxy) sphingolipids and they were more toxic when accumulated in cells, inducing neurodegeneration and other dysfunctions. (1-Deoxy)ceramides, (1-deoxy)dihydroceramides, and (1- deoxymethyl)dihydroceramides, the latter two containing a saturated sphingoid chain, have been studied in this work using differential scanning calorimetry, confocal fluorescence and atomic force microscopy, to evaluate their behavior in bilayers composed of mixtures of three or four lipids.
View Article and Find Full Text PDFJ Chem Inf Model
May 2024
Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Health Science & Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China.
The lipid raft subdomains in cancer cell membranes play a key role in signal transduction, biomolecule recruitment, and drug transmembrane transport. Augmented membrane rigidity due to the formation of a lipid raft is unfavorable for the entry of drugs, a limiting factor in clinical oncology. The short-chain ceramide (CER) has been reported to promote drug entry into membranes and disrupt lipid raft formation, but the underlying mechanism is not well understood.
View Article and Find Full Text PDFStress Biol
May 2023
College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
Dairy goats experience metabolic stress during the peripartal period, and their ability to navigate this stage of lactation is related to the occurrence and development of metabolic diseases. Unlike dairy cows, there is a lack of comprehensive analysis of changes in the plasma profiles of peripartal dairy goats, particularly using high-throughput techniques. A subset of 9 clinically-healthy dairy goats were used from a cohort of 96 primiparous Guanzhong dairy goats (BCS, 2.
View Article and Find Full Text PDFNew Phytol
September 2023
Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53115, Bonn, Germany.
The cuticle is a protective layer covering aerial plant organs. We studied the function of waxes for the establishment of the cuticular barrier in barley (Hordeum vulgare). The barley eceriferum mutants cer-za.
View Article and Find Full Text PDFInt J Mol Sci
March 2023
Instituto Biofisika (UPV/EHU, CSIC), and Department of Biochemistry and Molecular Biology, University of the Basque Country, E-48940 Leioa, Spain.
Cardiolipin (CL) is a key lipid for damaged mitochondrial recognition by the LC3/GABARAP human autophagy proteins. The role of ceramide (Cer) in this process is unclear, but CL and Cer have been proposed to coexist in mitochondria under certain conditions. Varela et al.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!