Fibroblast growth factor 21 (FGF21) is a member of FGF family. It has been demonstrated that FGF21 is an independent, safe and effective regulator of blood glucose levels in vivo. In order to improve the activity of FGF21, we exchanged the beta10-beta12 domain of the human FGF21 with that of the mouse FGF21 to construct a novel FGF21 gene (named hmFGF21), and then subcloned hmFGF21 gene into the SUMO expression vector to create pSUMO-hmFGF21 and transformed it into E. coli Rosetta for expression of the fusion protein SUMO-hmFGF21. Both in vitro and in vivo glucose regulation activity of hmFGF21 was evaluated. The SDS-PAGE result showed that compared with wild-type hFGF21, the soluble expression of hmFGF21 increased about 2-fold. HmFGF21 was more potent in stimulation of glucose uptake in HepG2 cells in vitro. The results of anti-diabetic effect on db/db mice demonstrated that hmFGF21 had better efficacy on controlling the blood glucose of the db/db diabetic animals than wild-type hFGF21. These results suggest that the biological properties of FGF21 are significantly improved by optimization.

Download full-text PDF

Source

Publication Analysis

Top Keywords

fgf21
8
novel fgf21
8
blood glucose
8
wild-type hfgf21
8
hmfgf21
6
[optimization characterization
4
characterization novel
4
fgf21 mutant]
4
mutant] fibroblast
4
fibroblast growth
4

Similar Publications

Approaches of promoting a neural milieu permissive for plasticity and resilience against neuronal injury are important strategies for the treatment of a range of neurological disorders. Fibroblast growth factor 21 (FGF21) which is known for its role as a potent regulator of glucose and energy metabolism has also proved to be neuroprotective against various mental diseases. However, the underlying molecular mechanisms remain elusive.

View Article and Find Full Text PDF

Dietary caloric input and tumor growth accelerate senescence and modulate liver and adipose tissue crosstalk.

Commun Biol

January 2025

The MetaboliZSm GrouP, Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.

Metabolic alterations are related to tumorigenesis and other age-related diseases that are accelerated by "Westernized" diets. In fact, hypercaloric nutrition is associated with an increased incidence of cancers and faster aging. Conversely, lifespan-extending strategies, such as caloric restriction, impose beneficial effects on both processes.

View Article and Find Full Text PDF

Dietary sulfur amino acid restriction (SAAR) elicits various health benefits, some mediated by fibroblast growth factor 21 (FGF21). However, research on SAAR's effects on the heart is limited and presents mixed findings. This study aimed to evaluate SAAR-induced molecular alterations associated with cardiac remodeling and their dependence on FGF21.

View Article and Find Full Text PDF

Associations between multiple metabolic biomarkers with steatotic liver disease subcategories: A 5-year Chinese cohort study.

Cell Rep Med

January 2025

Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghhai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai 200233, China. Electronic address:

The effectiveness of established biomarkers for non-alcoholic fatty liver disease (NAFLD) within the updated framework of steatotic liver disease (SLD) remains uncertain. This cohort study examines the association of four metabolic biomarkers-retinol-binding protein 4 (RBP-4), fibroblast growth factor 21 (FGF-21), adiponectin, and osteocalcin-with SLD and its subtypes: metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction with alcohol-related liver disease (MetALD)/alcohol-related liver disease (ALD). Among 3,504 Chinese participants aged 55-70, 938 (26.

View Article and Find Full Text PDF

Citrin Deficiency (CD) is caused by inactivation of SLC25A13, a mitochondrial membrane protein required to move electrons from cytosolic NADH to the mitochondrial matrix in hepatocytes. People with CD do not like sweets. We discovered that SLC25A13 loss causes accumulation of glycerol-3-phosphate (G3P), which activates carbohydrate response element binding protein (ChREBP) to transcribe FGF21, which acts in the brain to restrain intake of sweets and alcohol, and to transcribe key genes of lipogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!