Discrete distributions of adenosine receptors in mammalian retina.

J Neurochem

Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110.

Published: February 1990

Binding sites for both the adenosine A1 receptor agonists [3H]phenylisopropyladenosine and [3H]cyclohexyladenosine and the mixed A1-A2 agonist N-[3H]ethylcarboxamidoadenosine [( 3H]NECA) were localized in rabbit and mouse retinas using autoradiographic techniques. These two classes of agonists bound to very different regions of mammalian retinas. A1 agonist binding was localized to the inner retina, particularly over the inner plexiform layer. The binding of [3H]NECA was observed primarily over the retinal pigmented epithelium and the outer and inner segments of photoreceptors. [3H]NECA labeling was not affected either by including a low concentration of unlabeled A1 agonist or by pretreating tissue with N-ethylmaleimide to inhibit ligand binding at A1 sites. While virtually all of the [3H]NECA binding was displaced by an excess of unlabeled NECA, displacement with antagonist or a large excess of cyclohexyladenosine revealed that approximately 30% of the [3H]NECA binding was at non-A1,A2 sites. The majority of the binding in the outer retina thus labeled A2 receptor sites. The unique localizations of the two classes of adenosine receptors suggest different functions in visual processing.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1471-4159.1990.tb01920.xDOI Listing

Publication Analysis

Top Keywords

adenosine receptors
8
binding sites
8
[3h]neca binding
8
binding
7
discrete distributions
4
distributions adenosine
4
receptors mammalian
4
mammalian retina
4
retina binding
4
sites
4

Similar Publications

P2X receptors (P2XRs) are adenosine 5'-triphosphate (ATP)-gated ion channels comprising homomeric and heteromeric trimers of seven subtypes (P2X1-P2X7) that confer different rates of desensitization. The helical recoil model of P2XR desensitization proposes stability of the cytoplasmic cap sets the rate of desensitization, but timing of its formation is unclear for slow-desensitizing P2XRs. We report cryo-electron microscopy structures of full-length wild-type human P2X4 receptor in apo closed, antagonist-bound inhibited, and ATP-bound desensitized states.

View Article and Find Full Text PDF

Therapeutic modalities for psychogenic erectile dysfunction (PED) are poorly targeted because of the lack of specific pathological features. The common symptoms of PED include psychological stress-related negative emotions and erectile dysfunction. Exploring their common therapeutic targets is helpful in the development of effective PED treatment strategies.

View Article and Find Full Text PDF

Background: Breast cancer is a frequently diagnosed malignant disease and the primary cause of mortality among women with cancer worldwide. The therapy options are influenced by the molecular subtype due to the intricate nature of the condition, which consists of various subtypes. By focusing on the activation of receptors, Epidermal Growth Factor Receptor (EGFR) tyrosine kinase can be utilized as an effective drug target for therapeutic purposes of breast cancer.

View Article and Find Full Text PDF

Lipopolysaccharide-Neutralizing Peptide Modulates P2X7 Receptor-Mediated Interleukin-1β Release.

ACS Pharmacol Transl Sci

January 2025

Pharmaceutical Institute, Pharmacology and Toxicology, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany.

Lipopolysaccharide (LPS)-neutralizing peptides are emerging as new potential therapeutic modalities to treat sepsis and skin infections. Purinergic ligand-gated ion channels (P2X receptors) play a critical role in various biological processes, including inflammation. Recent drug development efforts have significantly focused on the modulation of P2X receptors.

View Article and Find Full Text PDF

G protein-coupled purinergic P2Y receptors in infectious diseases.

Pharmacol Ther

January 2025

Laboratório de Neuroimunologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil. Electronic address:

The purinergic P2Y receptors comprise eight G-coupled receptor (GPCR) subtypes already identified (P2Y, P2Y, P2Y, P2Y, P2Y, P2Y). P2Y receptor physiological agonists are extracellular purine and pyrimidine nucleotides such as ATP (Adenosine triphosphate), ADP (Adenosine diphosphate), UTP (Uridine triphosphate), UDP (Uridine diphosphate), and UDP-glucose. These receptors are expressed in almost all cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!