Rapid evolution of mitochondrial DNA (mtDNA) places intrinsic selective pressures on many nuclear genes involved in mitochondrial functions. Mitochondrial ribosomes, for example, are composed of mtDNA-encoded ribosomal RNAs (rRNAs) and a set of more than 60 nuclear-encoded ribosomal proteins (mRP) distinct from the cytosolic RPs (cRP). We hypothesized that the rapid divergence of mt-rRNA would result in rapid evolution of mRPs relative to cRPs, which respond to slowly evolving nuclear-encoded rRNA. In comparisons of rates of nonsynonymous and synonymous substitutions between a pair of divergent populations of the copepod Tigriopus californicus, we found that mRPs showed elevated levels of amino acid changes relative to cRPs. This pattern was equally strong at the interspecific level, between three pairs of sister species (Nasonia vitripennis vs. N. longicornis, Drosophila melanogaster vs. D. simulans, and Saccharomyces cerevisae vs. S. paradoxus). This high rate of mRP evolution may result in intergenomic incompatibilities between taxonomic lineages, and such incompatibilities could lead to dysfunction of mitochondrial ribosomes and the loss of fitness observed among interpopulation hybrids in T. californicus and interspecific hybrids in other species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/molbev/mss228 | DOI Listing |
Nat Struct Mol Biol
January 2025
Laboratory of Regulation of Gene Expression, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic.
Transfer RNAs (tRNAs) serve as a dictionary for the ribosome translating the genetic message from mRNA into a polypeptide chain. In addition to this canonical role, tRNAs are involved in other processes such as programmed stop codon readthrough (SC-RT). There, tRNAs with near-cognate anticodons to stop codons must outcompete release factors and incorporate into the ribosomal decoding center to prevent termination and allow translation to continue.
View Article and Find Full Text PDFNat Commun
January 2025
Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
Obesity poses a global health challenge, demanding a deeper understanding of adipose tissue (AT) and its mitochondria. This study describes the role of the mitochondrial protein Methylation-controlled J protein (MCJ/DnaJC15) in orchestrating brown adipose tissue (BAT) thermogenesis. Here we show how MCJ expression decreases during obesity, as evident in human and mouse adipose tissue samples.
View Article and Find Full Text PDFNat Commun
January 2025
Molecular Genetics of Eukaryotes, University of Kaiserslautern, Kaiserslautern, Germany.
Molecular chaperones are essential throughout a protein's life and act already during protein synthesis. Bacteria and chloroplasts of plant cells share the ribosome-associated chaperone trigger factor (Tig1 in plastids), facilitating maturation of emerging nascent polypeptides. While typical trigger factor chaperones employ three domains for their task, the here described truncated form, Tig2, contains just the ribosome binding domain.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Department of Molecular Biology Vadi Kampüsü, Istanbul Atlas University, Anadolu Cd., No 40, Kağıthane, Istanbul, 34408, Turkey.
Background: Modulation of protein synthesis according to the physiological cues is maintained through tight control of Eukaryotic Elongation Factor 2 (eEF2), whose unique translocase activity is essential for cell viability. Phosphorylation of eEF2 at its Thr56 residue inactivates this function in translation. In our previous study we reported a novel mode of post-translational modification that promotes higher efficiency in T56 phosphorylation.
View Article and Find Full Text PDFJ Proteome Res
January 2025
PPGEMN, School of Engineering, Mackenzie Presbyterian University & MackGraphe - Mackenzie Institute for Research in Graphene and Nanotechnologies, Mackenzie Presbyterian Institute, São Paulo, São Paulo 01302-907, Brazil.
Since late 2021, Omicron variants have dominated the epidemiological scenario as the most successful severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sublineages, driving new and breakthrough infections globally over the past two years. In this study, we investigated for the first time the host salivary response of COVID-19 patients infected with Omicron variants (BA.1, BA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!