The preference for singly charged ion formation by MALDI makes it a better choice than electrospray ionization for profiling mixtures of N-glycans. For structural analysis, fragmentation of negative ions often yields more informative spectra than fragmentation of positive ones but such ions are more difficult to produce from neutral glycans under MALDI conditions. This work investigates conditions for the formation of both positive and negative ions by MALDI from N-linked glycans released from glycoproteins and their subsequent MS/MS and ion mobility behaviour. 2,4,6-Trihydroxyacetophenone (THAP) doped with ammonium nitrate was found to give optimal ion yields in negative ion mode. Ammonium chloride or phosphate also yielded prominent adducts but anionic carbohydrates such as sulfated N-glycans tended to ionize preferentially. Carbohydrates adducted with all three adducts (phosphate, chloride, and nitrate) produced good negative ion CID spectra but those adducted with iodide and sulfate did not yield fragment ions although they gave stronger signals. Fragmentation paralleled that seen following electrospray ionization providing superior spectra than could be obtained by PSD on MALDI-TOF instruments or with ion traps. In addition, ion mobility drift times of the adducted glycans and the ability of this technique to separate isomers also mirrored those obtained following ESI sample introduction. Ion mobility also allowed profiles to be obtained from samples whose MALDI spectra showed no evidence of such ions allowing the technique to be used in conditions where sample amounts were limiting. The method was applied to N-glycans released from the recombinant human immunodeficiency virus glycoprotein, gp120.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13361-012-0425-8DOI Listing

Publication Analysis

Top Keywords

ion mobility
16
ion
9
structural analysis
8
n-linked glycans
8
electrospray ionization
8
negative ions
8
negative ion
8
ions
5
maldi-ms/ms traveling
4
traveling wave
4

Similar Publications

Role of NaCO as Nucleation Seeds to Accelerate the CO Uptake Kinetics of MgO-Based Sorbents.

JACS Au

December 2024

Laboratory of Energy Science and Engineering, Department of Mechanical and Process Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, 8092 Zürich, Switzerland.

There is an urgent need for inexpensive, functional materials that can capture and release CO under industrial conditions. In this context, MgO is a highly promising, earth-abundant CO sorbent. However, despite its favorable carbonation thermodynamics and potential for high gravimetric CO uptakes, MgO-based CO sorbents feature slow carbonation kinetics, limiting their CO uptake during typical industrial contact times.

View Article and Find Full Text PDF

Douchiba (DCB) is a nutritious food rich in various functional components such as Tetramethylpyrazine (TTMP), and the strain fermentation is crucial for enhancing its quality. This work utilized S2-2 and S6-J1 with high TTMP production for fermentation of soybeans to optimize the pre-fermentation process and to evaluate the flavor quality of mature DCB. The concentration of TTMP in DCB fermented by mixed microbial (MG) was 2.

View Article and Find Full Text PDF

Ionic Crosslinking of Linear Polyethyleneimine Hydrogels with Tripolyphosphate.

Gels

December 2024

Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Ciudad Autónoma de Buenos Aires 1113, Argentina.

In this work, the mechanical properties of hydrogels based on linear polyethyleneimine (PEI) chemically crosslinked with ethyleneglycoldiglycidyl ether (EGDE) were improved by the ionic crosslinking with sodium tripolyphosphate (TPP). To this end, the quaternization of the nitrogen atoms present in the PEI structure was conducted to render a network with a permanent positive charge to interact with the negative charges of TPP. The co-crosslinking process was studied by H high-resolution magic angle spinning (H HRMAS) NMR and X-ray photoelectron spectroscopy (XPS) in combination with organic elemental analysis and inductively coupled plasma mass spectrometry (ICP-MS).

View Article and Find Full Text PDF

It is widely accepted that mobile ions are responsible for the slow electronic responses observed in metal halide perovskite-based optoelectronic devices, and strongly influence long-term operational stability. Electrical characterisation methods mostly observe complex indirect effects of ions on bulk/interface recombination, struggle to quantify the ion density and mobility, and are typically not able to fully quantify the influence of the ions upon the bulk and interfacial electric fields. We analyse the bias-assisted charge extraction (BACE) method for the case of a screened bulk electric field, and introduce a new characterisation method based on BACE, termed ion drift BACE.

View Article and Find Full Text PDF
Article Synopsis
  • Seeds are vital for agricultural success, influencing seedling quality and crop yields, making accurate vigor assessment essential for productivity.
  • The study seeks to create a non-destructive method to evaluate maize seed vigor, overcoming the limitations of traditional testing methods, by using a large set of maize inbred lines and advanced technologies like machine vision and hyperspectral imaging.
  • The findings indicate that machine vision is the most effective method for seed vigor detection with about 90% accuracy, and it also uncovers key genetic and metabolic traits linked to seed germination, providing insights into improving seed vigor in maize.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!