Background: The prevalence of obesity is increasing exponentially world over. Leptin resistance/hyperleptinemia is attributed to its cause in majority of the obese humans where mutation in genetic component or ob gene has not been found operative. The generation of oxidative stress was suggested as its cause. In our previous study, we have reported that the inclusion of antioxidant enriched modified poultry egg (ME) in diet reversed the ionic imbalance and ameliorated the oxidative stress caused by excessive Zn in diet. In the present study, the efficacy of ME verses conventional egg (CE) was tested on Zn-induced leptin resistance in rat model to ascertain if the supplementation of antioxidants in the form of egg can reverse Zn-induced leptin resistance to leptin sensitive state.
Methods: Hyperleptinemia was induced in rats by feeding them Zn-supplemented hyperleptinemic diets-I and II (Zn-HL-Diet) for 2 months. Thereafter, half of them were fed either on CE or ME mixed Zn-HL-diets I and II for another two months. The data was analyzed applying one way Anova and Tukey's HSD post hoc test.
Results: The results revealed that food intake, gain in body weight, height and number/unit surface area of intestinal microvillus and serum leptin, glucose, insulin and cortisol were higher in CE and Zn-HL-Diet treated groups; serum Zn, Cu, Mg were higher and Cu and Mg in tissues were lower in them than the control group. In ME treated groups, these parameters were lower and were close to the control group. These changes resulted from the restoration of ionic balance of Zn, Cu and Mg in the blood serum and tissues including liver and hair in ME treated rats.
Conclusion: The data suggest that Zn-induced leptin resistance can be attenuated through restoring the ionic balance of Zn, Cu and Mg through inclusion of antioxidants in diet such as these modified eggs. But further clinical studies are required before they are put to use for human consumption.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3514344 | PMC |
http://dx.doi.org/10.1186/1743-7075-9-85 | DOI Listing |
Nutr Metab (Lond)
September 2012
Department of Zoology, Panjab University, Chandigarh 160014, India.
Background: The prevalence of obesity is increasing exponentially world over. Leptin resistance/hyperleptinemia is attributed to its cause in majority of the obese humans where mutation in genetic component or ob gene has not been found operative. The generation of oxidative stress was suggested as its cause.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!